
RD-Al47 648 KERNEL ADA PROGRAMMING SUPPORT ENVIRONMENT (KAPSE) 1/5
INTERFACE TER PUBLIC REPORT VOLUME 4(U) NAVAL OCEAN
SYSTEMS CENTER SAN DIEGO CA P OBERNDORF 38 RPR 84

UNCLASSIFIED NOSC/TD-_552- L-4 F/G 9/2 NL

E/Ill/l/E/ili
EmhmhhEEmhEmhI
mEmhmhEEEmhmhI
EhhhmhEEEmhhhI
IIIIEEEIIIIIhE
IIEEIIIIIhIhhE

1,0

11.2 1102.2
S 1112.0

1.8

11111.25 ~jI.41 B .

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU O STANDAR CS-163-A

"%-
.

-...:.:-V '-" ,- -:- .'- : .< .--'-... .--"- .-. '--- -,'... -*------......'-i--:,' -- ----. ':' '. .-. -. " --: -.- "-..,,,.

NOSC TD 552
0

KERNEL ADA PROGRAMMING
SUPPORT ENVIRONMENT (KAPSE)
INTERFACE TEAM PUBLIC REPORT

VOLUME IV
00

Co , ..,.,.o.coo

*;. ,- " .. .:

Patricia Oberndorf, KIT Chairman
I ~Naval Ocean Systems Center -.

San Diego, CA 92152

30 Apri1 1984

Interim Report for 1 July 1983 - 30 April 1984

Prepared for j
ADA JOINT PROGRAM OFFICE

313139 (400AN) Pentagon R
Washington, DC 20301 ,.4

Approved for public release; distribution unlimited

* I* .•

- - - - --- ;. ---. ",, -,

NAVAL OCEAN SYSTEMS CENTER SAN DIEGO, CA 92152

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

J.M. PATTON, CAPT, USN R.M. HILLYER
Commander Technical Director

ADMINISTRATIVE INFORMATION

This report is the fourth in a series consisting of inputs from the
KAPSE Interface Team and its auxiliary industry/academia team. The
work was sponsored by the Ada Joint Program Office under program ele- =
ment RDAF, project CS22, task AF0038AJPO, unit 84-05. The contribu-
tions are reproduced here exactly as received.

Released by Under authority of
R A. Wasilausky, Head J. Stawiski, Head
C I Support Systems Command, Control, Communications
Engineering Division and Intelligence Systems Department

ACKNWLEDGEMENTS
. . -

The author extends her appreciation to the many DOD, academic, and

commercial activities whose continued support makes this effort
possible. The sense of teamwork and cooperation displayed by all
members of these two teams is outstanding and will mean the success of
the program.

MM
%

................... ***~********~~*~..* ...- •....w'....., .. ,

UNCLASSIFIED
lumv CL'SnSCMU OF IMS PF*01,.

REPORT DOCUMENTATION PAGE
I 13- EURTY CLAEUUCATM 11

UNCLASSIFIED
Y& -ECURTY CLAS5SCAION AUTHONTv 3. oIT iUfiON/AVALAOIUM OF REPORT

Z 06CEAS CATION/DOWUPADWO sclEota* Approved for public release; distribution unlimited

4 PROi&UG OGAAGMO REPORT NUMSEOWS) S. MOITRBG OROANMATMO REPORT NUMBERIS)

NOSC TD 552

Ga NAUdE OF I6O3M OCAINATION ft OFFICE SYVMOL 7o NAME OF MONITORNG ORGADB.ATION

Naval Ocean Systems Center

ft ADDRESS y Sia sd WPP C*d) 7b. ADDRESS IC,'y. Stte ardZIP Cod.l

San Diego, CA 92152

ft NAME OF FUNOIG/SPNSON G ORGAIATION t OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENT1FICATION NUMBER

Ada Joint Program Office

S& ADDRESS KAY. SWO .dF Cra. 10 SOURCE OF FUNONG NUMBERS

D 9OGAM ELEMENT NO PROJECT NO. TASK NO, WORK UNiT NO

3D 139 (400AN) Pentagon

Washington, DC 20301 RDAF CS22 AF0038AJPO 84-05

11 TITLE (.wk.*. Seaway Cbeadoc,.

KERNEL ADA PROGRAMMING SUPPORT ENVIRONMENT (KAPSE) INTERFACE TEAM PUBLIC REPORT
Volume IV

12 PERSONAL AUA 0 S

Patricia Oberndorf, KIT Chairman
130 TOf REPORT 1REP TIME COVERED 14 DATE OF REPORTI Y*w. Marak Ow) IS PAGE COUNT

Interim fo 1 JUL 83 TO 30 APR 8 30 April 1984 436
1B S,,LMENTAl Y NOTAllON

I? COATI CODES IS EW.JECT TURMS Cw. e , v .,iddtvIi~' b S. . .

W aNo s ~ Computer language KIT
Ada KITIA
Interface standards KAPSE
Programming support systems

The continuing activities of the Kernel Ada Programming Support Environments (KAPSE) interface team and its industry/academia
auxiliary are reported. "A~dr4m @m &,1OD-doveloped progranming laaguage.)CT~he Ada Joint Program Office (AJPO)-sponsored effort
will ensure the interoperability and transportability of tools and data bases among different KAPSE implementations. The effort is the
result of a Memorandum of Agreement (MOA) among the three services directing the establishment of an evaluation team, chaired by the
Navy, to identify and establish KAPSE interface standards. As with previous ADA-related developments, the widest possible participation
is being encouraged to create a broad base of experience and acceptance in industry, academia, and the DOD. -

30OW O/SAVAAM. OF NMC 21 NSMC IU LAOCATIONo W JNCA IRE/U D SAM'AS MP Qam1e USERS UNCLASSIFIED Agency Accession

Sb MM OF 1 100 MO.UAL 2,11 TELEPHONE Imc A . COW 22C. OfFICE SYMBOL

Patricia Oberndorf (619) 225-6682

DD FORM 1473.84 JAN , AN ,0M .,YNSED UNCLASSIFIED 7

"....................... """".""..."..............."....".".-"."" '" " "" " "" .' "".'""" ".'

UNCLASSIFIED

uumTv cLimriciii OF TO$S PAME 4§6 .8 ~MS

DE CD17mJAim UNCLASSIFIED

StCURITY CLAMPICAION OF ?"I$ PAGSBEU. ber Rafue.

Technical Report

APSE I & T
TECHNICAL PROGRESS

30 April 1984

Cotac N660,/K/-3-C-O245 =

CORI Itei A005

* for

NAVAL OCEAN SYSTEM4S CENTER
271 Catalina Boulevard-

San Diego, California 92152

Prepared by

TRW I
Systems Engineering & Applications Division

(Defense Systems Group
342 KeyonStreet, Suite 202

San Diego, California 92110

1. INTRODUCTION~ 1

* 2. TEAM PROCEEDINGS

A. KIT/KITIA Minutes, 12-14 July 1983 2A-1

B. KIT/KITIA Minutes, 16-18 October 1983 2B-1

C. KIT/KITIA Minutes, 16-19 January 1984 2C-1

3. KIT/KITIA DOCUM'TIC1

A. Ada Programming Support Environment Interoperability
and Transportability (I&T) Management Plan 3A-1

B. Draft Specification of the Commnon APSE Interface

C. CAIS Tni-Service Planning Meeting, 16 Novemb~er 1983 . 3C-1

D. RAC Introduction 3D-1

I E. STONEIG Status Report 3E-1

F. Stoneman Analysis: Phase Io .. 3F-1

*G. Preliminary outline for a User's Guide
to Ada Transportability 3G-1

H. Charter of the Comnpliance Working Group
of the KIT/KITIA o . 3H-1

I.* Draf t KIT/KITIA Glossary o 3r-1

LJ. Ada Environments as GFE is Harmful 37-1

K. KITIA Policy Recommendations 3K-1

L. Security Requirements for Ada Programming
Support Requirements 3L-1

M. Discretionary Security Mechanism for the CAIlS 3M-1

N. Mandatory Security Mechanism for the CAIlS o........ 3N-1 .-

0. CArlS Program Transportability Interface 30-1

L P. Position Paper: The Need for a CAIlS Operational

Seanic 3i

(Concluded)

Q. Toward a Formal Semantics for the CAIS 3Q-1

R. UNIX as the ChIS? 3R-1 -

S. Ada Configuration Management Workshop, 7-8 June 1983,
Technical Report 3S-1

T. Proposed Charter 3T-1

U. AZE Review Results 3U-1

- .-

L

iv-

I -

- .;,.%°.. .

.-..-.'.-.....~.,-..

6

S

SECTION 1 -~

INTRODUCTION

~6

B S

I

L. 0

I-

S

1**

r.

9

1-1

.................-...

INTF40DUCTION

'" '-'1'his report is the fourth in a series that is being published by the KAPSE

Interface Team (KIT). ',e first was published as a Naval Ocean Systems Center

(NOSC) Report, TD-2 9, -d April 1982, and is now available through the
National Technical Information Service (NTIS)* for $19.50 hardcopy or $4.00

microfiche; ask for order number AD All5 590. The second was published as NOSC

TD-552, dated October 1982, and is now available through NTIS for $44.50 -

hardcopy; ask for order number AD A123 136. The third was also published as NOSC

TD-552, dated October 1983, and will be available through NTIS. This series of
reports serves to record the activities which have taken place to date and to

submit for public review the products that have resulted. The reports are issued

approximately every six months. They should be viewed as snapshots of the

progress of the KIT and its companion team, the KAPSE Interface Team from

Industry and Academia (KITIA); everything that is ready for public review at a
given time is included. These reports represent evolving ideas, so the contents

should not be taken as fixed or final.

MEETINGS

The two teams are now regularly meeting jointly. Meetings during this - -

reporting period include ones in July 1983 in San Diego, in October 1983 in "'

Dallas, in January 1984 in San Diego and in April 1984 in Seattle. The approved -

minutes from the July, October and January meetings are included in this report. - I
As usual, some of the working groups have also held individual meetings between

regular KIT/KITIA meetings.

TEAM ORGANIZATION

During the July 1983 meeting, a new set of joint KIT/KITIA working groups

was organized. Following the lead of the joint KIT/KITIA working group which had

taken responsibility for the Common APSE Interface Set (CAIS - formerly SIS),

several other working groups were formed to take responsibility in other product

or work areas. Throughout much of the rest of this report, you will find ,

references to:

*National Tednical Infornation Servie (NTIS), Departnent of Commerce, .
5285 Port Royal Thad, Springfield, Va. 22161

1-2

*- * " *. '..". - ""II I I iIII . . . I- -' --

CAIs: the CAIS working group, responsible for producing various

versions of the CAIS

RACWG: the Requirements and Design Criteria working group,

responsible for the production of the requirements

document which will guide the development of version 2 of

the CAIS

GACWG: the Guidelines and Conventions working group, working to

produce a User's Guide to Ada Transportability

DEFPW: the Definitions working group, responsible for bringing .

together a glossary of terms found in the KIT/KITIA

documents so that the terminology is used consistently
and accurately

STOC: the STON94AN working group, responsible for reviewing

STONEMAN with the requirements of I&T in mind and

suggesting improvements which provide a better context

for the work of the KIT and KITIA

COMaPW: the Canpliance working group, studying the implications

of trying to validate the conformance of a particular

CAIS implementation to the CAIS standard .

" STANIWG: the Standards working group, responsible for guiding the
teams with respect to proper procedures and formats for

standardization of the CAIS specification as well as

• .making sure the teams are aware of existing standards

which are closely related to the CAIlS

THE APSE INTEROPERABILITY AND TRANSPORTABILITY (I&T) PLAN -

A new version of this plan is included in this report. It reflects only

minor changes in thinking, as well as the new schedule given to the teams by the

Tri-Service Review board in November 1983. •

1- 3

-. 7.

THE (a)MMN APSE INTERFACE SET (CAIS)

Formerly the Standard Interface Set (SIS), the name has been changed by
which the interface set is known. It was felt that putting the word ustandard"
in the title before the interface set was declared a standard was misleading.
The new term is pronounced "CASEO.

The CAIS' met several times during 1983 in order to finalize an initial -'

version of the CAIS. This version was documented as CAIS Version 1.0 and was
presented at a public review meeting in Washington D.C. in September 1983. This

document contained several errata which were corrected in CAIS Version 1.1. This

version is included in this report and can also be ordered from NTIS using order

number A134 825.

This public review was well-attended, and several comments and questions

were taken by the CAIS(members. Probably the most consistent criticisms
levelled at CAIS 1.1 are (1) that the semantics are incomplete and (2) that

rationale should be provided which would provide the sort of explanation which
the presenters gave during the review presentations. Both of these aspects are
being worked on by the CAISWG, and future versions are expected to show

improvements. Comments received on the CAIS document can be found through the
MILNET account KIT-INFORMATICN, password "KIT".

Subsequent to the public review, the Tri-Service Review board met to
consider the schedules of various activities in relation to the proposed CAIS
schedule. As a result a new CAIS schedule was given to the KIT and KITIA:

Draft CAIS 1.2 - April 1984 .
Draft CAIS 1.3 - November 1984

MIL-STD CAIS 1 - January 1985
Start ChIS 2.0 - January 1985

Draft CAIS 2.0 - January 1986
MIL-STD MAIS 2 - January 1987

These changes were prompted primarily by a desire to better coordinate the CAIS
production with contractual obligations for the ALS, ALS/N and AIE. The new

schedule is based on the production of two MIL-STDs, the first after three
years of KIT/KITIA work and the other after 2 more years; the original schedule

w " 1-4 1-"'
---

!- - " -'..... -.

(called for one MIL-SmD after four years of work. The November meeting results

are included in this report as a Memorandum for the Record from Bob Mathis,

AJPO Director.

S In response to these changes, the CAISWG has somewhat loosened the

restrictions to strict compatibility with the AIE and ALS for version 1. This is

- necessitated by two main facts:

* - if version 1 is to be standardized, it must be sufficiently complete to

(1) stand up on its own and (2) go far enough to make upward
compatibility with version 2 a possibility

-this makes it necessary for version 1 to venture into some areas in which

there is not good agreement between the AIE and ALS, resulting in

departure frcm one or the other or possibly both in an attempt to find an

acceptable compromise.

* REQUIREMENTS AND CRITERIA (RAC)

Further clarification of issues and consensus have emerged from the last

K several months of debate on the RAC. Another attempt at a new organization was 4 _

made in December 1983, modelling the RAC on the STEEU@.N document which gave the

final requirements for the Ada language. This organization has proven quite

successful and has lead to the ability of the KIT and KITIA members to

*concentrate on the issues at hand more clearly than ever before. However,

although several parts of the document have matured sufficiently for a vote to

be taken in April 1984, a lot more work remains to be done.

The version of the RAC which was voted on in April appears in this report.

*It is accompanied by an introduction which explains some of what transpired in

the course of the April meeting concerning the RAC. The reader will notice that

*two sections were not considered mature enough in April to warrant a KIT/KITIA

vote. of these, the most difficult to deal with is the one on the KAPSE database

- (i.e., the section entitled object management). These requirements have been the

most elusive and frustrating to the teams. The latest (all new) version was only

-introduced at the January meeting, but it is starting to gather consensus. It is

most likely that this is the most difficult area because no exact model for such

- a thing exists. It shows some of the characteristics of both a classical
* operating system and a modern data base management system, but cannot be treated

-5

as either one. It is hoped that an appropriate model will be articulated as a

result of the work done at the April meeting.

One of the problems the teams have faced repeatedly is the question of the
relationship between STONEM4AN and the KIT/KITIA charter. While it is clear that
STONEMAN set the stage for the entire APSE effort - and therefore of the I&T
work - it is equally clear that STONEMAN did not deal with a number of issues
which have emerged now, four years later. Among these are the existence of at

least two KAPSE-incompatible APSEs, the trend towards workstations and the

distribution of APSEs over a variety of machines, and the DoD's emerging

requirements concerning discretionary and mandatory security in development
environments.

The need to more closely examine STONEMAN was particularly evident as the

teams worked to develop the RAC. Periodically, the RACWG has come upon
requirements which are needed to achieve I&T but are more general in scope. It

was natural to look to STOEAN to provide such requirements, but it was often
found that STONEMAN was mute on the point. This lead to the formation of the

STONEWG to investigate these and other aspects of the 1980 document in an

- attempt to determine what improvements could be made after four years of

* experience, including the current I&T effort. The initial STONEWG analysis of
STONEMAN appears in this report, along with a report on the status and plans of

the S!4E.

GUIDELINES AND CONVENTIONS

Very early in the teams' work on I&T it was realized that there was a limit -

to the I&T which can be achieved simply by declaring a set of interface

standards. It has been the intention of the teams to publish such "wisdom" and

guidelines as they have accumulated in the course of working on the I&T problem,

in order to help those interested in achieving I&T beyond use of the interfaces.

The GAOQ was formed to undertake the development of such a set of guidelines,
and the document will be called the User's Guide to Ada Transportability. A

' proposed outline for this document appears in this report.

I --6

* .- *".. *,. *-..--,,

* - . .- . . . '- ,

COMPLIANCE

In the tradition of the Ada language, it has been a goal of this effort to3 produce a set of interface specifications against which an implementation could

be judged to determine its conformance. The focus of this effort, as shown in

the CoahFI's charter in this report, is to gL-3e the production of the CAIS

documents in such a way that the resulting product can be used to validate
* implementations. Special emphasis is placed on completeness and consistency of

". the document, particularly the semantics. Because the area of semantics is such

a difficult one, there have been several KIT/KITIA papers concerning it

in previous public reports. Two more, by Freedman and Yelowitz, are included in

this report.

DEFINITIONS

One of the first problems with which the teams dealt was that of 0
definitions. This resulted in the inclusion of definitions for such terms as

Transportability and Interoperability in an earlier public report. This work is

continuing, under the guidance of the DEMW. The goal is to produce a large pool

of terms used throughout the products of the KIT/KITIA, with a glossary of the .

terms used in a particular document included with that document. The first
" version of such a pool of terms is included in this report. %berever possible,

the terms have been taken from other existing glossaries, but some are used in a

I unique manner in KIT/KITIA documents and are so defined in the pool.

* STANDARDS

,_ It is important that the work of the teams be coordinated with other work •

- in the area of standards. The STANDWG serves as the liaison between the
KIT/KITIA and the standards community. The working group is collecting a list of

- possibly related standards, as well as studying the existing military documents

on how one creates and formats a standard. This guidance will be factored into S

the work of the CAISW.

"* POLICY DISCUSSIONS

- It seems that policy is never far from anyone's mind when discussing the

Ada program, and this has lead to many discussions during the KIT and KITIA
1-7

. -

meetings. Such concerns lead to the generation of an I&T Strategy document

(published in a previous public report). In October 1983, the announcements by

the three services of their intended GFE policies for the APSES lead to

considerable concern among industry representatives. This, coupled with the DoD

report to Congress in December 1983, resulted in a new KITIA policy paper by

Wrege and a new KITIA policy recommendation to the AJPO. These are included in

this report.

KIT AND KITIA PAPERS

In addition to the two semantics papers already mentioned, several other

papers have been produced by members of the KIT and KITIA. Two concern security

questions and how to impose security requirements on the CAIS. These are by

Pasterchick and Fitch. Another, by Gargaro, is a suggested re-ordering for the

RAC which was used in that document's evolution. Following the semantics papers,

the reader will find a paper which compares the CAIS to UNIX and raises some ..

questions about how one might go about using the UNIX interfaces as a more

obvious basis for CAIS version 1.

I&T TOVOLS- -3

- .The work by CSC in the area of Configuration Management has been concluded.

* The final report on the Configuration Management Workshop held in June 1983 is

' included in this report...

* The work by TI on the APSE Interactive Monitor (AIM) is continuing. Due to

the dif:iculties of securing an appropriate compilation capability, the actual

implementation of the AIM has been delayed, but plans are now taking shape which

should see an AIM implementation some time in early 1985. " - "

OTHER KIT/KITIA ACTIVITIES

Two other activities were spurred by the DoD report to Congress mentioned

under Policy Discussions above. One was an attempt to "openu the KITIA Lp to

S"'" wider participation and involvement; this was characterized as a KITIA

- extension, nick-named "KITIA-X". The other was an attempt to start planning for

an Ada Run-Time Environment Working Group (ARTEIG); this is specifically called

out in the report to Congress as one of several panels to be included in a new

DoD Computer Systems Interface Working Group (CSIWG). While proposals for the

18

".. . . * *° -.•.°. o

KITIA extension were formally rejected at the April 1984 KITIA meeting (a more
informal approach was approved), work did begin to plan for the ARTDF. The
proposed ARTEG charter is included here.

Another aspect of APSE investigation which has been pursued in conjunction

with the KIT is the periodic review of both the AIE and the ALS. Included here
is a report on the latest of these, a review of the new AIE B-5 specifications

issued following the contract award.

Finally, in response to many inquiries, the AJPO has decided to foster the

organization of a CAIS Implementors' Group. Those who have spoken to either the
AJPO or NOSC about interest in being part of such a group have been invited to
an initial organizational meeting on 18 June 1984 in San Diego. This one-day
meeting will begin with introductions of what each person is doing concerning

the CAIS, but the major emphasis will be on organizing a group which will then
take responsibility for itself; it is not intended that this group will in any

way be a part of the KIT or KITIA, although there is great KIT/KITIA interest in

and desire for interaction with those who are learning about the CAIS through

implementation.

Ep
CONCLUSIGN

This Public Report is provided by the KIT and KITIA to solicit comments and
3 feedback from those who do not regularly participate on either of the teams. .

Comments on this and all previous reports are encouraged. They should be

addressed to:

Patricia Oberndorf

i- Code 423

Naval Ocean Systems Center

San Diego, CA 92152

or sent via ARPANET/MILNET to POBERNDORFcLB.

1 -9

% o• .o o - -- .. - .•. •.. . .. °. ••.....,....... *o.
"• '.-.." ." . - ." . .,. -. -'. " -...'..-......-... .- ..'-,.... ..- ".. ...--.- -.- -.-- -.-. - . -. -. .", -,,.- . "

F 0

.0

SECTION 2 0

TEAM PROCEEDINGS -*

- -. '

0

I
0

U S _

0

N.

9

&

2-1

.

KIT/KITIA MINUTES
MEETING OF 12-14 JULY 1983

SAN DIEGO, CALIFORNIA

ATTENDEES: SEE APPENDIX A
BIBLIOGRAPHY OF HANDOUTS: SEE APPENDIX B .. -

12 JULY 1983

n 1. OPENING REMARKS 0

Tricia Oberndorf, KIT Chairperson, brought the meeting to order.

The KAPSE Interface Team Public Report will be available shortly.

The results of the AIE Public Review are being compiled by Warren Loper.

Additional HERMES documents have been ordered.

The KIT/KITIA will form new "named' working groups to work in parallel
with the present numbered working groups. As well as the existing SISWG
(for definition of the initial Standard Interface Set), there will be new
working groups to address Requirements and Criteria (RACWG), STONEMAN II
(STONEWG), Definitions (DEFWG), Standards (STANDWG), and Compliance
(COMPWG).

Brian Schaar, AJPO, made the following announcements:

- The U.S. Arny is making the ALS available to various companies that
agree to certain conditions on its use as contained in an announcement
in the Commerce Business Daily.

- Bob Mathis, AJPO, has determined there will be a Public Review of the
Standard Interface Set document in Washington on the 14th & 15th of
September 1983. Therefore the SISWG will have a dry run in Boston in
late August to prepare for this review. The first day will be
dedicated to presenting the SIS model followed by panel discussions on
the second day.

- The AJPO is now forming an APSE Evaluation and Validation Team similar
to the KIT. The group is presently Air Force led.

- Lt. Col. Vance Mall is the new Deputy Director of STARS.

2. GENERAL BUSINESS

In reading the SIS document, KIT/KITIA members are reminded of the basic
guidelines the SISWG had to follow: implementable on the AIE/ALS, a bare
machine, and modern operating systems.

The SIS is available on the KIT-INFORMATION directory.

A review of the current version of the Interoperability & Transportability
Management Plan was conducted.

2A-1

.• o" ,

The results of the previous day's RACWG meeting were presented. All comments
on the R&C document should go to numbered WG chairs.

The SISWG will present their latest decisions after lunch. If there are
specific questions in a particular area, the appropriate SISWG member should be
contacted at lunch.

3. BREAK FOR LUNCH

4. GENERAL DISCUSSIONS ON THE SIS AND R&C DOCUMENTS

Working Group 3 suggested the SIS packages be organized into groups so that "'
the document would allow a building of libraries of packages. The R&C document
should have mare functionally based guidelines.

Anthony Gargaro presented areas for the SIS to improve in its consistency
with the Ada RM including consistent use of parameter modes, range constants, -.

and type declarations.

A discussion of the different sections of the SIS followed, including the
definition of the SIS before the R&C document and the use of Ada RM Text 10
packages. A distinction between the initial SIS and the SIS to which the R&C
document applies was reiterated. .

If there are significant disagreements between the work of the SIS and
opinions of KIT/KITIA members, there is still the "minority report" vehicle
available to all KIT/KITIA members to document their concern.

Tricia Oberndorf presented the results of the KIT/KITIA canvass she conducted
to insure commonality of goals.

5. WORKING GROUP REPORTS

Working Group 1 concentrated on the Process Management, TEXT 10, and device
10 sections. Tim Harrison discussed the rationale for inclusion of specific
procedures in response to WGl comments. -

Working Group 2 requested the Process Model be discussed further before ."-

specific comments were submitted.

Working Group 3 presented discussion of the inter-process communications area
which was further defined by the SISWG.

Working Group 4 expressed a desire for additional rationale and semantics
throughout the document. Extensibility issues have not been addressed in this
version of the SIS. Facilities are missing for a broadcast message,
asynchronous communications, security, and recovery mechanisms. SISWG admitted
these items were considered but deferred in this version.

Working Group 2 voiced serious reservations concerning the feasibility of the
database model. Major points raised were binary relations, attributes on
relations, typing on attributes, binding of names to attributes and
relationships. Other points (i.e., runtime typing, access control, and
different stategies of primary relation concept) were not greatly discussed by
Working Group 2.

--Erhard Ploedereder commented on Working Group 2's comment of

2A-2

"Serious reservations". He believes that the database model is one we
can live with; it certainly deserves evolution, but the entire approach
is NOT gravely faulty.

A presentation by Tucker Taft followed on Name Spaces. He pointed out the
reasons to bring process and data base models together: to keep process and
data naming similar, to keep relationships between processes and between
processes and data bases similar, and to cut down on the number of distinct 5
packages. He also discussed syntax of the name space.

Dit Morse presented an Execution Model produced by Bill Wilder which dealt
with mechanisms for process execution and mechanisms for an Ada-like task
execution.

Friday

6. GENERAL BUSINESS

Presentation on the Standardization Process by Bill LaPlant were given.

7. BREAK FOR MORNING WORKING GROUP MEETINGS .

8. LUNCH

9. WORKING GROUP REPORTS

SISWG presented an outline of the new Sections of the SIS and declined from
mentioning further availability of the document until further discussion has
taken place among the group metbers.

RACWG announced their editor, Reed Kotler. The RACWG plans to narrow systems :.'-£ requirements. They stress the SIS is an interface, NOT an implementation, and
in addition to I & T requirements there should be fuctionality requirements.

STONEWG's purpose is to produce and update a document stating therequirements for Ada Programing Support Environments. They plan to use

Stoneman 1980 Version (the original Stoneman) and other available APSE
documents. Suggested topics are a definitions of terms, Ada program

-. environments, and host environments.

DEFWG expressed four points. One, the problem- a need for definitions (good
. light vs. chandelier). Two, a purpose- a clear consistent glossary of critical

terms across and within KIT/KITIA documents and to oversee the use of this
glossary. Three, establish mechanisms for determining a necessary glossary of

a- terms. Four, the glossary should be printed as a feature of the Public Report
and terms in the Public Report should be reserved. Suggestions were also made
for a terminologist from each workin9 group.

STANDWG, consisting of 2 members, elaborated on this morning's presentation
of the standardization process mentioning the formation of a KIT/KITIA working
group on Standardization. They discussed the need to develop a facility for
reformatting a document for standardization and to use current standards for
this reformation.

Guidelines Working Group will update a current outline written by Ron Johnson
of the Guidelines document and make it available at the October meeting.

COMPWG discussed evaluations and validations of APSEs and SISs and the
process of defining requirements of a validation . Points expressed were to
develop a compliance matrix, and to develop a methodology for the specification

2A-3

+,,........... '..-.... +.....-.,o°° ,,,., •.... •,,•,

I of KAPSE interface semantics so they can also be used with the R &C.

10. MEETING WAS ADJOURNED AND WORKING GROUP MEETINGS FOLLOWED.

PI

2A-

APPENDIX A
ATTENDEES

KIT/KITIA Meeting
12-14 July 1983

KIT Attendees:

*CASTOR, Jinny AFWAL/AAAF

FERGUSON, Jay DoD

FOIDL, Jack TRW

FOREMAN, John Texas Instruments

FROMHOLD, Barbara U.S. Army CECOM

*HARRISON, Tim Texas Instruments

HART, Hal TRW

JOHNSON, Doug SoftWrights -

JOHNSTON, Larry NADC

KEAN, El izabeth RADC/COES

KRAMER, Jack IDA

KRUTAR, Rudy NRL

*LAPLANT, Bill HQ USAF

LOPER, Warren NOSC

*MAGLIERI, Lucas Canadian National Defense HQ

MILLER, Jo NWC

MYERS, Gil NOSC

*MYERS, Philip NAVELEX

OBERNDORF, Tricia NOSC

PEELE, Shirley FCDSSA-DN

ROBERTSON, George FCDSSA-SD

*SCHAAR, Brian AJPO

*STEIN, Mo NSWC/DL

STOPYRA, Norma NAYMAT (Guest)

*TAFT, Tucker Intermetrics

2A-5

TAYLOR, Guy FCDSSA-DN

THALL, Rich SofTech

WILDER, Bill SofTech

2A-6

. •

KITIA Attendees:

ABRAMS, Bernard Grumman Aerospace Corp.

BAKER, Nick McDonnel Douglas Astronautics

BEANE, John Honeywell

COX, Fred Georgia Institute of Technology

DRAKE, Dick IBM

FELLOWS, Jon System Development Corp

FISCHER, Herman Litton Data Sytsems

FREEDMAN, Roy Hazeltine Corp.

GARGARO, Anthony Computer Sciences Corp.

HUMPHREY, Dianna Control Data Corp.

JOHNSON, Ron Boeing Aerospace Co.

KERNER, Judy Norden Systems

KOTLER, Reed Lockheed Missiles & Space

LAMB, J. Eli Bell Labs

LINDQUIST, Tim Virginia Institute of Technology

LYONS, Tim Software Sciences Ltd., U.K.

McGONAGLE, Dave General Electric

MORSE, H. R. Frey Federal Systems

PLOEDEREDER, Erhard IABG
West Germany

" REEDY, Ann PRC

RUBY, Jim Hughes Aircraft Co.

SAIB, Sabina General Research Corp. •

. SIBLEY, Edgar Alpha Omega Group, Inc.

WILLMAN, Herb Raytheon Company

WREGE, Doug Control Data Corp. 0

. YELOWITZ, Larry Ford Aerospace & Coimunications Corp.

2A-7

. . . .-. . . •

. .. . ?, -. ... * .. s.- * '

-- .-.-. '-.- .-. ,....>J'2 .--'-.., .- .

APPENDIX B - MEETING HANDOUTS

1. SIS Drafters Working Papers, SIS Working Group

2. "Ada Programing Support Environment (APSE) Requirements for Interoperability
and Transportability and Design Criteria for the Standard Interface Set",
WORKING PAPER, dtd. 27 June 1983

3. "Computer Programing Language Policy", DoD Directive 5000.31, Draft

Revision

4. NSIS Categories", Preliminary Draft, D.E. Wrege

5. Hardcopy of presentation "Document Control Mpthodology" by J. Foidl

2A-8

.. 8 • W..-.. .-

KIT/KITIA MINUTES
MEETING OF 16-18 OCTOBER 1983

DALLAS, TEXAS

ATTENDEES: SEE APPENDIX A 0
HANDOUTS: SEE APPENDIX B

16 OCTOBER 1983

S•1. OPENING REMARKS

Tricia Oberndorf, KIT Chairperson, brought the meeting to order.

John Foreman, Texas Instruments, was introduced as the local host
for the KIT/KITIA and Ada-TEC meetings.

S

2. GENERAL BUSINESS

The Computer Sciences Corporation contract for Ada tool development has
*. been completed through the design stage. A Configuration Management workshop

was held and a report is to be generated on its results. p

Texas Instruments has progressed through the Critical Design Review in the
development of the Ada Interactive Monitor tool.

The Request for Proposal for the expected third Ada tool has been delayed
indefinitely.

The Ada Language System (ALS) is due to be delivered to the Army this month.
Copies of the ALS are available from the Army under the terms described in the
Commerce Business Daily.

3. WORKING GROUP REPORTS

CAISWG - Common APSE Interface Set Working Group - conducted a Public Review
of the Common APSE Interface Set (CAIS) Version 1 in Washington, D.C. in
mid-September. The review attracted 217 attendees from government and industry
who submitted 125 questions which were answered at the Review. The final
revision to the Version 1 document is expected to be released in April 1984.
CAIS Version 2 work is expected to commence in January 1984 for ultimate
submission as a DoD Standard. Review comments on CAIS Version 1 are requested
from industry by 1 November 1983 and from DoD by 15 December 1983.
Implementation of Version 1 is at the user's own risk.

RACWG - Requirements and Criteria Working Group - circulated a point paper
from Working Group 1 (A. Gargaro) on "CAIS Program Transportability Interface"
and requested all KIT/KITIA members to contribute to the revision of, the R&C
document presently under way. The target date for submission of this document
to the KIT/KITIA for final approval is presently January 1984.

DEFWG - Definition Working Group - has a list of terms available for review
and has obtained a good glossary from the U.K. Study Report. DEFWG will
provide hard copies to the working group chairs.

2B-1

- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . -.o°. o. .. . -.. ,. . . . -. . . -. - •.,".. '
"" "' "" "" '""' '""""" " """' " """""" "'"""" "" """"' " " "" 9" -'""" - -' -""""" ".% "'" " "' --%. - %'•"'-'" " ." -" """ "a --- " . .'-'

COMPWG - Compliance Working Group - is in the formulation stage with a
meeting scheduled for Washington in mid-December.

STANDWG - Standards Working Group - distributed hardcopies of the slide
presentation on the "Defense Standardization Program" presented at the last
KIT/KITIA meeting in San Diego, and a trip report including standardization
recommendations to the KIT and KITIA.

GACWG - Guideline and Conventions Working Group - report deferred.

Working Group 1 - reviewing inputs for the R&C document.

Working Group 2 (KIT) - in a transition phase.
(KITIA) - no report.

Working Group 3 (KIT) - in a transition phase.
(KITIA) - reviewing named working group products.

Working Group 4 (KIT) - no report.
(KITIA) - no report.

4. AJPO STATUS

Members may experience some problems with the split of the ARPANET into the
MILNET and ARPANET. Best to work with your local TAC representative whose
names are listed in the ARPANET handbook or via NIC@NIC.

Brian Schaar (AJPO) expressed his gratitude to John Foreman (TI) for his
efforts in hosting the KIT/KITIA Meeting and the AdaTEC. He also expressed
his thanks for the efforts of the CAISWG in the generation of the Version 1 -

document. The feedback on th CAIS Public Review has been positive thus far.

Dr. Edith Martin (USDRE) will be in Dallas to present DoD Certificates of
Recognition to individuals who contributed to the Ada language definition.

Dr. Robert Mathis (AJPO) will be attending some of tomorrow's working group
meetings. --

A tri-service meeting is planned for Thursday at which the CAIS will be
formally submitted to the services for review.

There will be a CAIS presentation to the AdaTEC attendees on Thursday
morning.

5. BREAK FOR DINNER AND WORKING GROUP MEETINGS

MONDAY OCTOBER 17, 1983

6. CONTINUE WORKING GROUP MEETINGS

7. BREAK FOR LUNCH

8. SEPARATE KIT AND KITIA MEETINGS

9. CAIS PRESENTATIONS

Dr. R. Mathis, Director, Ada Joint Program Office, presented the members of

2B-2
l,

the CAIS Working Group with covers of CAIS Version 1. The covers contained an
expression of gratitude for the work on the document and were signed by Dr.
Mathis (AJPO) and Dr. Martin (USDRE).

10. EUROPEAN ECONOMIC COMMITTEE PRESENTATION

The status of the Ada work being performed in Europe was presented by a
member of the EEC which includes an Ada compiler and a portable MAPSE which is S
separate from the U.K. funded MAPSE efforts. Ada-Europe also supports such
groups as AdaTEC in the ALS and AIE review cycles and will support the review
of the CAIS version 1.

11. CAIS DISCUSSION

A freeform discussion on the status and plans for the future CAIS was held.
Major areas of concern addressed the following topics. The final iteration of
Version 1 cannot preclude future implementations of distributed environments
although they are not specifically addressed in the document. The process
control and communication areas need additional work. The concept of the "node
handle" needs additional clarification. The generic device node mechanism .
needs completion. The area of discretionary access control needs
identification, and mandatory access control requires consideration. The need
for network interfaces should be considered. Standard attributes should be
defined as part of the document (and possible standard exceptions and relation
names). Resource access and resource synchronization should be considered for
the final version.

12. BREAK FOR COFFEE

13. FUTURE MEETING SCHEDULE

Tricia Oberndorf defined the future KIT/KITA meeting schedule as follows:

16-19 Jan 84 - San Diego
9-12 Apr 84 - Seattle

16-19 Jul 84 - Toronto
1-4 Oct 84 - New Hampshire

Jan 85 - San Diego
Apr 85 - Washington, D.C.
Jul 85 - San Francisco
Sep 85 - Connecticut
Jan 86 - San Diego

14. KIT/KITIA CAIS COMMENTS

A poll of the individual KIT/KITIA members was taken to identify the major
concerns they held regarding the CAIS Version 1 document. The following is a "-- -
summary of these potential problem areas:

* lack of security related functions in accordance with DoD
security requirements

* how projects transition to an APSE implementing
the CAIS .

e the exact relationship of the contents of the CAIS to STONEMAN

* the apparent weakness of the inter-process model

e the impact on existing tools re: portability

2B-3

.-........ . . •.-... •... . . -* -.. .Q• *. - • .

• how to address interfaces not fundamentally addressed in
the present CAIS

9 lack of data management

* lack of a rationale format such as g
- issues
- al ternati ves
-advantages
- disadvantages

* definition of policy regarding standardization and conformance

* need for graphics and data dictionary support

need to address configuration management

e need to address distributed environments

TUESDAY, 18 OCTOBER

15. REQUIREMENTS AND CRITERIA DOCUMENT -

A discussion of the Requirements and Criteria document was held to plan for
the future revision of this document. The major concerns regarding the present
document were the lack of pointers or cross-references to the STONEMAN
document, reaffirmation of "criteria" as a basis of selecting between
alternate CAIS imelementations, and a reaffirmation of the definition of --
"interoperability as used in the document.

' "16. RELATED R&C PRESENTATIONS

The following brief presentations and discussions were led by various RACWG
members. Their purpose was to solicit feedback from the joint KIT/KITIA on the
unresolved issues which the RACWG must resolve before the document can be J -

finalized.

-. Anthony Gargaro (Computer Sciences Corporation) presented the methodology
for the reorganization of the R&C document and a strategy for specification of
requirements.

* Dennis Cornhill (Honeywell) proposed a set of interfaces that may be
required in the CAIS such as a standard editor, command language interpreter,

* and transmit/receive.

* . LCDR Philip Myers (Naval Electronics Systems Command) presented security
concerns for APSEs including multi-level and non-mul ti-level securi ty
requirements. These requirements need inclusion in STONEMAN and the CAIS , .
documents.

Edgar Sibley (Alpha Omega Group) presented a methodology for inclusion of a
data management schema that can be extended for future versions of the CAIS.

17. BREAK

18. KIT/KITIA POLL

2B-4

- * S ,-

A question was put to the KIT and KITIA "Should there be requirements for
the CAIS that would be the same for both the host and target run-time
systems?". YEA - 15 NAY - 20

Regarding the definition of "Interoperability", should the KIT and KITIA use
the definition as contained in the Public Report Volume 1, or as contained in S
CAIS Version 1? PR Vol 1 - 6 CAIS 1 - 14

Should the R&C document be defining requirements for CAIS Version 1, CAIS

version 2, some future milestone (year), some future CAIS (Version X, where

m CAIS 1 - 0 CAIS 2 - 28 Year X - 0 CAIS X - 10

19. ADJOURN JOINT MEETING AND BREAK FOR WORKING GROUP MEETINGS

U2B-

.~~~~~~, .,

*e

-0 .

2B-" 5 o -

.-..-.

APPENDIX A
ATTENDEES

KIT/KITIA Meeting
16-18 October 1983

KIT Attendees:

CASTOR, Jinny AFWAL/AAAF-

FERGUSON, Jay DOD

FOIDL, Jack TRW

FOREMAN, John Texas Instruments

FROMHOLD, Barbara U.S. Army CECOM

HARRISON, Tim Texas Instruments

HART, Hal TRW

JOHNSON, Doug SoftWrights

JOHNSTON, Larry NADC

KEAN, Elizabeth RADC/COES-

KRAMER, Jack IDA-
-

KRUTAR, Rudy NRL

LAPLANT, Bill HQ USAF

* -LINDLEY, Larry NAC

LOPER, Warren NOSC

MAGLIERI, Lucas Canadian National Defense HQ

MILLER, Jo NWC

MYERS, Gil NOSC

MYERS, Philip NAVELEX

OBERNDORF, Tricia NOSC

PASTERCHIK, David MITRE

PEELE, Shirley FCDSSA-DN

ROBERTSON, George FCDSSA-SO

SCHAAR, Brian AJPO

2B-6

STEIN, Mo NSWC/DL

TAFT, Tucker Intermetrics

TAYLOR, Guy FCDSSA-DN

IJ THALL, Rich SofTech

WALTRIP, Chuck John Hopkins Univ.

WILDER, Bill SofTech

2B-7

KITIA Attendees:

ABRAMS, Bernard Grumman Aerospace Corp.

BAKER, Nick McDonnell Douglas Astronautics

BEANE, John Honeywell

CORNHILL, Dennis Honeywell/SRC ..

COX, Fred Georgia Institute of Technology

COCKERHAN, Beth Georgia Institute of Technology

DRAKE, Dick IBM

FELLOWS, Jon System Development Corp

FISCHER, Herman Litton Data Sytsems

FREEDMAN, Roy Hazeltine Corp.

GARGARO, Anthony Computer Sciences Corp.

GEHARDT, Mark Raytheon

GOVELITY, Lori IBM

JOHNSON, Ron Boeing Aerospace Co.

KERNER, Judy Norden Systems

KOTLER, Reed Lockheed Missiles & Space

LAHTINEN, Pekka Oy Softplan AB
Finland

LAMB, J. Eli Bell Labs

LINDQUIST, Tim Virginia Institute of Technology

MORSE, H. R. Frey Federal Systems

PLEODEREDER, Erhard IABG
West Germany

REEDY, Ann PRC

RUBY, Jim Hughes Aircraft Co.

SAIB, Sabina General Research Corp.

SAVAYA, John Teledyne Systems

SIBLEY, Edgar Alpha Omega Group, Inc.

2B-8

..................................

WESTERMANN Rob TNO-IBBC
The Netherlands

WILLMAN, Herb Raytheon Company

PWREGE, Doug Control Data Corp.0

*YELOWITZ, Larry Ford Aerospace &Commnunications Corp.

-28-

APPENDIX B - MEETING HANDOUTS

1. Common APSE Interface Set, Version 1.1, dtd. 30 September 1983

2. Hardcopy of presentation "Defense Standardization Program", W. LaPlant

3. "Security Requirements for Ada Programming Support Environments" DRAFT,
David C. Pasterchik, dtd. 15 October 1983

4. "Ada Programming Support Environment (APSE) Requirements for
Interoperability and Transportability and Design Criteria for the Common
APSE Interface Set" WORKING PAPER, dtd. Columbus Day 1983

5. "CAIS Program Transportability Interface", KITIA Working Group 1 Position
Paper, dtd. 30 August 1983

2B-1

2B--,

*o%- .. '-.-...-

KIT/KITIA MINUTES
16-19 JANUARY 1984

SAN DIEGO, CALIFORNIA

ATTENDEES: SEE APPENDIX A
HANDOUTS: SEE APPENDIX B

16 JANUARY 1984 - KITIA MEETING

1. OPENING REMARKS

* Edgar Sibley, KITIA chairperson, brought the meeting to order. New members
Steve Glaseman representing Aerospace Corporation and Andy Rudmik
representing GTE (Phoenix) were welcomed and introduced. Skip Montanaro
was Introduced as the new alternate for Honeywell.

2. GENERAL BUSINESS

* Edgar reviewed the member selection process for the KITIA. The two new
members were replacements for one release and one resignation. There were
no objections to a KITIA size of thirty full members. Tim Lyons related
that at the Ada Europe meeting it was proposed a member be added to the
KITIA as an EEC Ada Europe representative. Edgar proposed the normal
application process of resume submission to the KIT chairperson,
management committee screening and a vote be followed. There were no
objections to this proposal.

3. DoD POLICY DISCUSSIONS

* Eli Lamb said it is in DoD's best interest to take a non-exclusionary
approach to environment acquisition for two critical reasons:

1. to allow industry room for profit to motivate innovation and don't
exclude competition

2. to evolve the technology and encourage innovation

The following recommendations were made: 4P

1. standardize Common APSE Interface Set (CAIS) as low-level (OS)
interface and then evolve
2. encourage development of tool sets based on CAIS
3. require delivery of toolsets and software using CAIS
4. GFE "demonstrably superior" tools
5. make a clear statement that DoD is looking for "orders of magnitude"
better environments

Doug Wrege raised serious concerns with the DoD statements on GFE of
environments. His key item was:

1. a developer should develop software on any APSE as long as it can be
maintained by the life-cycle APSE

2C-1

.

* Doug recommended a draft policy statement from the KITIA be prepared prior
to the January Tr-Service Review.

4. LAYERING FOR TOOLS

* Sabina Saib gave a presentation on Layering for Tools. This would allow
for data abstraction at the lowest level and encourage building on the
work of others. The major services required would be interaction,
communications, and data management. Some of the needs of a tool developer
such as character and string input, file opening, buffered 10, uniform
tape format, uniform file naming and consistent file name parsing were
also discussed.

5. BREAK FOR LUNCH

6. WORKING GROUP REPORTS

e Working Group 1 met in November in Washington. They have been reviewing
the Requirements and Crtieria document from the perspective of
functionality required for Interoperability and Transportability. They -... -

have reviewed CAIS Version 1.1. WG 1 believes they should continue as a
reviewing body for KIT/KITIA products. The new WG1 chairman is Roy
Freedman.

* Working Group 2 discussed the paper Edgar Sibley distributed on the NET.
Judy Kerner was re-elected as the WG2 chairman. -

a Working Group 3 announced Dick Drake as their new chair. WG 2 wants to
maintain their review role on KIT/KITIA products.

e Working Group 4 is experiencing an identity crisis and may want to disband
as a formal group. Nick Baker was announced as the new chairman.

* A discussion of the roles of the Working Groups followed including the -
roles of the "named" working groups (CAISWG, RACWG, etc.). It was
recommended that the Working Groups meet tomorrow to decide their future
organization and activities.

7. KITIA ELECTIONS .

* Herm Fischer was elected as the new KITIA chairperson. The KITIA expressed
their gratitude to Edgar Sibley for his excellent work as the former
chair.

8. RULES DISCUSSION

• It was recommended the KITIA rules be clarified to define a "member" (an
individual or an organization); clarify the voting role of the KIT chair
and secretary; number of meetings missed; alternate attendance at meetings
(one per year); clarify timeframes for secretary to publish data as at -

least two weeks before a meeting, minutes available three weeks after a
meeting, send documentation to members missing a meeting, and provide a
list of current documents.

2C-2

S.-.- --.-.- .'. .. - .--'- - .- ,-. ... ,..".,."'.''' ,' . , ' r., ', '. . . ' '

* 9. KITIA POLICY STATEMENT

* . Herm Fischer indicated a KITIA team would formulate a draft policy
statement on Do~s intended GFE of environments for the KITIA to review
later in the week.

10. KITIA MEETING ADJOURNED

-2C-

17 JANUARY 1984 - JOINT KIT/KITIA MEETING

1. OPENING REMARKS

9 Tricia Oberndorf, KIT chairperson, brought the meeting to order.

* Herm Fischer was introduced as the new KITIA chairperson.

e New members for the KITIA were introduced including A. Rudmik for GTE, S.
Glaseman for Aerospace. New KIT members were also introduced including W.
Wilder for PMS-408, Dennis Turner and John Hollister for CECOM, E. Lee as
an alternate for NSWC, K. Chadwick as an alternate for Canadian National
Defense HQ and F. Belz replacing E. Nelson for TRW.

2. GENERAL BUSINESS

• The AIE environment development is still in a hold status. The compiler
development continues with completion expected in November 1984 and
validation in January 1985.

* The ALS development continues with compiler validation expected in
September 1984. The interim environment has been distributed by the Amy
to selected applicants for rehosting.

* The ALS/N procurement for the standard Navy environment has been delayed.

* The CSC contract for development of a Configuration Management tool has
expired. A report presenting the results of a Configuration Management
Workshop held under this contract will be published in the next Public -
Report.

e Texas Instruments has completed design of the AIM tool but implementation
i s delayed pending additional compiler validations.

3. WORKING GROUP REPORTS

* KITIA Working Group 1 expects to devote 70% of their time to review of the
Requirements and Criteria (RAC) document and 30% of their time to review
of the Common APSE Interface Set (CAIS) document.

. KITIA Working Group 3 will retain their review role and address policy
issues that arise.

* The RACWG has a new version of the RAC document available for review. They
have received inputs from Working Group 1 and solicit additional inputs.

* The CAISWG is awaiting additional comments from the services as part of
the review process of Version 1.1. The NTIS order number for this document
is A134825.

* The DEFWG has been working on a list of terms for a standard Glossary.

e The STANDWG is investigating procedures to meet MIL-STD document formats.
They are preparing a cross-reference for specifications that may impact
the CAIS document.

0 The COMPWG met in Washington in December. They have prepared a matrix

2C-4

. .."--

.7," %",

approach to requirements verification for the RAC and CAIS documents which
will be presented later in the meeting.

e The GACWG is reviewing an outline for a User's Guide to Transportability.

4. MILNET/TAC ACCESS

e The MILNET and ARPANET are splitting. The ARPANET TAC will remain the same
but the MILNET TAC will require a new login procedure. Each user must have
a registered login number. Contact the host administrator to register. For
ECLB users it is MARK@ECLB.

m 5. GENERAL BUSINESS 0

* There will be a KIT presentation at the next Tr-Service review.

* The next Public Report is expected to be completed at the end of April
1984. Public Report #3 is now at the printer for reproduction and should
be available shortly. 0

* Rudy Krutar pointed out that Tartan Labs is not tasked to maintain DIANA.
NRL is looking at a task on intermediate language standardization.

9 Bruno Witte (NOSC) is working on building an Ada math library and will
release an RFP shortly. As part of this process he will conduct a survey
to identify desired items for this math library. The proposals for WWMCCS
Ada tools are due. The main goal of this procurement was to use a number
of companies to construct a quick and dirty toolset.

6. CAIS SCHEDULE O

* The revised schedule for generation of the CAIS document is:
- Version 1.2 April 84 (response to conmments submitted)
- Version 1.3 November 84 (version for review by services)
- Version 1.4 January 85 (MIL-STD 1)
- Tri-Service Configuration Control Board January 85
- Version 2 start January 85 (for calendar year 86 review cycle)
- MIL-STD 2 in January 87

* The CAISWG will determine the schedule for replies to comments.

- 7. FUTURE MEETING SCHEDULE S

• Future KIT/KITIA meeting are planned for
- Apr 9-12 Seattle
- Jul 16-19 Toronto
- Oct 1-4 New Hampshire

1985
- Jan San Diego
- Apr Washington D.C.
- Jul San Francisco
- Sep Connecticut/Texas/United Kingdom (7)

1986

- Jan San Diego

8. BREAK FOR NUMBERED WORKING GROUP MEETINGS

2C-5 -5

..............................

. ' " ". . . " ' " - -' - - - -" -' -' -, - ' . -" , ,, -' '. '- -'- - - - - - •- " " -" -, -" -"• ._ ' _"*-'' A :',-t --. '.:'-

9. RECONVENE INTO SEPARATE KIT AND KITIA MEETINGS

10. KIT DoD ONLY MEETING

11. BREAK FOR LUNCH

12. RECONVENE FOR NAMED WORKING GROUP MEETINGS

13. REQUIREMENTS AND CRITERIA DOCUMENT PRESENTATIONS

9 George Robertson presented a format for analysis of the R&C document
utilizing a matrix format. Requirements and criteria on one axis can be -
matched to CAIS features on the other axis. This is intended to provide
traceability from the R&C to the CAIS.

* A general discussion regarding the database support requirements for the
CAIS occurred. Major issues included the use of unique names and version
groups. Version groups are called for in the STONEMAN document. No real
database resolutions were attained.

* Frank Belz gave a presentation on different levels of CAIS layering and
the associated functionality of each layer's application. A general
discussion of the pros and cons for a layered CAIS followed.

14. BREAK FOR DAY

18 JANUARY 1984

15. REQUIREMENTS AND CRITERIA DOCUMENT DISCUSSIONS

9 An open discussion of the R&C document sections was conducted. It was
repeated that the R&C document is intended to apply to CAIS Version 2
which will be submitted for designation as a Military Standard and is not --
binding on the current Version 1.1 or expected Version 1.2 document.

e Emphasis was made that the R&C requires item-by-item review to insure that .

solutions (design) are segregated from requirements.

* Each section of the document needs its own Introduction.

16. BREAK FOR LUNCH I

17. OBJECT MANAGEMENT SUPPORT

e A proposed revision for the Object Management Support section of the R&C
document was circulated to the KIT/KITIA for review. Following a general
discussion, the proposed changes were deferred pending further analysis.
KIT/KITIA members wished additional time to review the recommendations.

18. BREAK FOR NUMBERED WORKING GROUPS

19. BREAK FOR DAY

2I

19 JANUARY 1984

20. EVALUATION AND VALIDATION PRESENTATION

9 Ginny Castor presented the plans and status for the newly formed APSE 0
Evaluation and Validation Team. The team had its first meeting in December
and is planning to sponsor a yearly E&V Workshop to solicit inputs from
industry and academia. Attendance will be by invitation based on a
submitted point paper. The first workshop is scheduled for April 1984.
The KIT/KITIA will be able to interchange data since some of the KIT
members are al so on the team.

21. TECHNICAL PRESENTATIONS

* Tim Lindquist presented a methodology for identifying and correcting some
of the consistency and completeness problems in the initial CAIS. His
approach is to describe the CAIS by syntax functionality, protocol, and
limits through the use of an abstract machine.

* Roy Freedman is preparing a methodology for the specification of CAIS
semantics via operational semantics. This is expected to provide an
operational definition of interoperability and transportability by
example.

e Henry Lefkowitz presented results of work performed by Alpha Omega Group on
a Data Dictionary System. Some of their conclusions include dataI collection at a single point of entry, the system must support -

programmers, it must provide management information, must have automatic P
data capture, and the database must be available for query during
programming.

22. BREAK FOR LUNCH

£23. RECONVENE INTO NAMED WORKING GROUPS P

24. RAC SCHEDULE

* The schedule for revision and review of the R&C document for vote by the
KIT and KITIA was distributed. A revised document will be available by 19
March 1984.

25. KITIA POLICY STATEMENT

* Herm Fischer presented to the KIT the draft KITIA Policy Statement
regarding APSE distribution as Government Furnished Equipment on
contracts. This position will be presented to the next Tr-Service Review
for consideration. The KITIA presented its position to the KIT for
information purposes.

26. MEETING ADJOURNED

2C- 7

.......................
•, .- . .• . - o . . .* . , - •

APPENDIX A
ATTENDEES

KIT/KITIA Meeting
16-19 January 1984

KIT Attendees:

*BELZ, Frank TRW

CASTOR, Jinny AFWAL/AAAF

CHADWICK, Kevin Canadian National Defense HQ

FERGUSON, Jay DoD

FOIDL, Jack TRW

FOREMAN, John Texas Instruments

HARRISON, Tim Texas Instruments

HART, Hal TRW -

HOLLISTER, John CECOM

JOHNSTON, Larry NADC

KEAN, Elizabeth RADC/COES- -

KRAMER, Jack IDA

KRUTAR, Rudy NRL

LEE, El izabeth NSWC/DL -

LINDLEY, Larry NAC

LOPER, Warren NOSC

MOLONEY, Jim Intermetrics

MILLER, Jo NWC

MYERS, Gil NOSC

MYERS, Phillip NAVELEX

OBERNDORF, Tricia NOSC

PEELE, Shirley FCDSSA-DN

ROBERTSON, George FCDSSA-SD

SCHAAR, Brian AJPO

2C-8

TAFT, Tucker Intermetrics

TAYLOR, Guy FCDSSA-DN

THALL, Rich SofTech

WALTRIP, Chuck John Hopkins Univ.

WILDER, Bill PMS-408 .

U2C-

KITIA Attendees:

ABRAMS, Bernard Grumman Aerospace Corp.

BAKER, Nick McDonnell Douglas Astronautics -

BRYAN, Doug Lockheed Missiles & Space

CORNHILL, Dennis Honeywell/SRC

COX, Fred Georgia Institute of Technology

DRAKE, Dick IBM

FELLOWS, Jon System Development Corp

FISCHER, Herman Litton Data Sytsems

FISHER, Gerry CSC

FREEDMAN, Roy Hazeltine Corp.

GLASEMAN, Steve Aerospace Corp. - -

JOHNSON, Ron Boeing Aerospace Co.

KERNER, Judy Norden Systems

KOTLER, Reed Lockheed Missiles & Space

LAMB, J. Eli Bell Labs

LINDQUIST, Tim Virginia Institute of Technology

MORSE, H. R. Frey Federal Systems

PLOEDEREDER, Erhard IABG
West Germany

REEDY, Ann PRC

RUBY, Jim Hughes Aircraft Co.

RUDMIK, Andres GTE

SAIB, Sabina General Research Corp.

SIBLEY, Edgar Alpha Omega Group, Inc.

WESTER4ANN, Rob TNO-IBBC
The Netherlands

WILLMAN, Herb Raytheon Company

WREGE, Doug Control Data Corp.

YELOWITZ, Larry Ford Aerospace & Communications Corp.

2C-10

.

* .-. o • -.- ,

APPENDIX B - MEETING HANDOUTS

1. Position paper, The Need for a CAIS Operational Semantics, R.S. Freedman
0

2. Department of Defense Trusted Computer System Evaluation Criteria, DoD, 15
August 1983.

3. "Security Requirements for Ada Programing Support EnvironmentsN DRAFT,
David C. Pasterchik, dtd. 16 January 1984.

4. *Ada Programming Support Environment (APSE) Requirements for
Interoperability and Transportability and Design Criteria for the Common
APSE Interface Set" WORKING PAPER, dtd. 13 January 1984.

5. "Ada Environments as GFE is Harmful", D.E. Wrege, dtd. 13 January 1984

6. KITIA Policy Recommendations, Draft, dtd. 17 January 1984. Do

2C-11

. .- .-0

Si:-i-)T

2C--l-1'(

J........ .**...l-*.*-.. . . . -.

SECTION 3

KIT/KITIA DOCUMENTATION

3-1

Ada Programning Support Environmient
(APSE)

- Intercperability and Transportability (I&T)

Management Plan

January 1984

* for

Ada JOINT PFGRAM. OETIE
Th e Pentagon

Washingtcri, D. C. 20301

prepared by

NVAL CEN SYSTEMS CENTER
271 Catalina Boulevard

San Diego, California 92152

I 3A-1

TABLE OF C ENTS (

1 .0 INTRODUCTION 3
1.1 BACKGROUND 3
1.2 DEFINITIONS 2
1 .3 OSJETIVES 2
1.4 DOCUMENT ORGANIZATION 4
2.0 ORGANIZATION 5
2.1 Ada JOINT PROGRAM OFFICE 5
2.2 ARMY, AIR FORCE AND NAVY 5
2.3 KAPSE INTERFACE TEAM (KIT) 7
2.4 KAPSE INTERFACE TEAM FROM INDUSTRY AND

ACADEMIA 8
2.5 SUPPORT CONTRACTORS 9
2.6 USER GROUPS AND PROFESSIONAL SOCIETIES 9
2.7 STANDARDS ORGANIZATIONS 9
2.8 LIAISON WITH IMPLEMENTATION EFFORTS 10
3.0 APSE I&T PLAN 11
3.1 WORK BREAKDOWN STRUC'JRE 11
4.0 PROVISIONS FOR SPECIAL NEEDS 20

APPENDIX A GLOSSARY A-i

APPENDIX B AIE DOCUMENTS B-i

APPENDIX C ALS DOCUMENTS C-i -

APPENDIX D OTHER DOCUMENTS D-i

3A-2

..

I&T Plan

1. 0 INTRODUCTION

The Ada Programing Support Environment (APSE) Interoperability and
Transportability (I&T) Plan is presented in this document. The I&T activities

necessary to achieve sharing of tools and data bases between APSEs are
described. Schedules and milestones for these activities are presented as
well as a Work Breakdown Structure (WBS) for accomplishing them.

These I&T activities are conducted by the Kernel APSE Interface Team
(KIT).

The major responsibilities are:

a. APSE I&T Management
b. APSE I&T Analysis
c. APSE I&T Standards Development
d. APSE I&T Tools Development
e. APSE I&T Coordination with Implementation Efforts - -

1.1 BACKGROUND

In 1975 the High Order Language Working Group (HOIWG) was formed under the -.
auspices of the U.S. Department of Defense (DD) with the goal of
establishing a single high order, language for new DoD Embedded Computer . -

Systems (ECS). The technical requirements for the common language were
finalized in the Steelman report [1] of June 1978. International competition
was used to select the new common language design. In 1979 the DoD selected
the design developed by Jean Ichbiah and his colleagues at CII-Honeywell Bull. .-
The language was named Ada in honor of Augusta Ada Byron (1816-1851), the
daughter of Lord Byron and the first computer programmer.

It was realized early in the development process that acceptance of a
comon language and the benefits derived from a common language could be
increased substantially by the development of an integrated system of software
development and maintenance tools. The requirements for such an Ada
programming environment were stated in the STONEMAN document (2]. The
STONEMAN paints a broad picture of the needs and identifies the relationships
of the parts of an integrated APSE. STONEMAN identifies the APSE as support
for "the development and maintenance of Ada application software throughout
its life cycle". The APSE is to provide a well-coordinated set of tools with 0

. uniform interfaces to support a programming project throughout its life cycle.
The Initial Operational Capabilities (IOCs) are called Minimal Ada Programming
Support Environments (MAPSEs).

[1] Requirements For High Order Computer Programming Languages: STEELMAN, S

DoD, June 1978

(2] Requirements for Ada Programming Support Environments, STONEMAN, DoD,

3A-3

......... .. . -. ...-.- .

-~~~~~~~." -- -.-. ',..-. •-. ° •. ... •..°•

. ••" " " " _';,

I&T Plan 2_ "

The Army and Air Force have begun separate developments of APSEs. The
Army APSE has been designated the ALS (Ada Language System) and that of the
Air Force, the AIE (Ada Integrated Environment). The Navy APSE will make
maximum use of those Army and Air Force products that meet Navy requirements
and will require the development of only those additional components required
for Navy applications.

The Ada Joint Program Office (AJPO) was formed in December 1980. The AJPO
coordinates all Ada efforts within DoD to ensure their compatibility with the
requirements of other Services and DoD agencies, to avoid duplicative efforts,
and to maximize sharing of resources. The AJPO is the principal DoD agent for
development, support and distribution of Ada tools and Ada coannon libraries.

1.2 DEFINITIONS

INTEROPERABILITY: Interoperability is the ability of APSEs to exchange
data base objects and their relationships in forms usable by tools and user
programs without conversion. Interoperability is measured in the degree to
which this exchange can be accomplished without conversion.

TRANSPORTABILITY: Transportability of an APSE tool is the ability of the
tool to be installed on a different KAPSE; the tool must perform with the
same functionality in both APSEs. Transportability is measured in the degree
to which this installation can be accomplished without reprograming.
Portability and transferability are conmonly used synonyms.

1.3 OBJECTIVES

The objectives of the APSE I&T effort are:

a. To develop requirements for APSE I&T.

STaNEW paints a broad picture of the needs and relationships of the
parts of an integrated APSE. Although STONM is being used as the primary.-.
requirements document for APSE developiment efforts, it does not provide
sufficient detail to assure I&T between APSEs. APSEs built to accomodate I&T
requirements will insure cost savings in the developuent of tools. The cost
of reprogramming tools for different APSEs will be significantly reduced.

b. To develop guidelines, conventions and standards to be used to achieve
I&T of APSEs.

Guidelines, conventions, and standards describe the means by which the
requirements can be satisfied. It would be premature to develop steadfast
standards during the early part of this APSE I&T effort. There is little
precedent for I&T between programming support environments of this anticipated
magnitude and thus little guidance for the development of these guidelines, --

conventions, and standards. The guidelines, conventions and standards that
are developed during this APSE I&T effort will evolve over a five year period
from 1982 through 1987. These guidelines, conventions, and standards will be

3A-4
-

;.- '.L.".T-.'.- -"--'. :.-- -'" .-.. :'--'..T.-'".T...-..-. '?,?.."-i

I&T Plan 3 ':-' -

o

presented in public forums to insure that they are sound and realistic.

c. 7lb develop APSE I&T tools to be integrated into both the MIE and MLS.

This APSE I&T effort provides for the development of tools to be
integrated into both the AIE and the ALS. These tool development efforts will
help identify interfaces and surface interface problems associated with I&T
between different APSEs. They should also show how closely the guidelines, -

conventions and standards developed by this APSE I&T effort reflect the
reality of the AIE and ALS efforts. But the tools developed by this APSE I&T
effort will not be limited to this test function. They will also be well
documented tools which will become useful additions to any APSE.

d. To monitor the AIE and ALS development efforts with respect to APSE
I&T.

This APSE I&T effort provides for the monitoring of the AIE and ALS
development efforts. The monitoring will result in recommendations for
resolution of differences between the AIE or the ALS and the evolving APSE I&T
conventions and standards. Interface areas which would inhibit I&T between
the AIE and ALS will also be identified.

AIE and MLS documents will be reviewed and analyzed, and recommendations
will be made. When questions arise that need resolution and/or clarification
with regard to the ALS and AIE development efforts the KIT (see Section 2.3)
will rely on the assistance of Army and Air Force members who are involved in i
these efforts.

e. To provide initiative and give a focal point with respect to APSE IsT. ..

A focal point is needed for APSE developers and users with regard to".
information about I&T. APSE IST questions arise frequently withinprofessional societies and user groups. A forum is needed in which APSE I&T

questions can be addressed and discussed and in which APSE I&T information can
be disseminated throughout the Ada community. .

The KIT and KITIA (see Sections 2.3 and 2.4) will provide focal points for -- .

the Ada community. Public reports on the results of this APSE I&T effort will .,.,..

be published every six months. This is in keeping with the AJPO philosophy of
public exposure of all aspects of the Ada program. The KIT and KITIA will
also participate in other programs connected with APSE I&T, including _@
international development efforts, whenever possible.

f. To develop and implement procedures to determine compliance of APSE
developments with APSE I&T requirements, guidelines, conventions and
standards.

3A-5

~* %~ ** ** . .".

.

I&T Plan 4 -

Procedures must be established by which the recommendations that are
developed by this APSE I&T effort will be reviewed and implemented by the
AJPO. The procedures that are to be followed should apply not only to the AIE
and ALS development efforts, but also to other APSE development efforts. Work
on the determination of compliance procedures will be pursued in cooperation
with the AJPO's Evaluation and Validation program.

1.4 DOCUMENT ORGANIZATION "

Section 1 of this document discusses the purpose and scope of the I&T
Plan, the objectives of the I&T effort, and the basic concepts, definitions,
and objectives.

Section 2 discusses the sponsorship, the participating organizations, the
organizational inter-relationships and responsibilities, and the potential
forums for public involvement.

The specific tasks to be accomplished in persuit of I&T are covered in

Section 3. These functions are presented in a work breakdown structure for
the project and a schedule of milestones and deliverables.

Special needs in achieving I&T are discussed in Section 4.

Appendix A contains a glossary of terms and acronyms applicable to the I&T
effort and Appendix B contains a bibliography of AIE documents. Appendix C
contains a bibliography of ALS documents and Appendix D contains other APSE
related documentation. Appendix E describes the elements of the I&T Work -

Breakdown Structure.

3A-6

..

I&T Plan 5

2.0 ORGANIZATIN_

Figure 1 shows the participants in the APSE I&T effort. 7he following
sections provide a brief description of these organizations and their
relationships.

2.1 Ada JOINT PROGRAM OFFICE

The KIT is an agent of the Ada Joint Program Office (AJPO). The KIT
supports the AJPO by performing the activities outlined in this plan and by
providing recommendations and information to the AJPO. The AJPO makes final
decisions in the areas of requirements, policy, procedures and funding.

2.2 ARMY, AIR FORCE AND NAVY

Currently the Army and Air Force have begun separate developments of
APSEs. In the development of its APSE, the Navy plans to make maximum use of
Army/Air Force products that meet Navy requirements. The KIT will review of
all these APSE developments and identify critical aspects of the designs where
conventions or standard interfaces and specifications are needed to insure
compatibility. It will be the role of the KIT to interact with these services
and their respective APSE contractors for information-exchange and
consultation. The contractor for the Army's ALS is SofTech Inc.; the Air"-
Force contractor for the AE is Intermetrics Inc.. The Navy contractor has
not been selected yet. Representatives of both the Air Force and Army APSE
development efforts are members of the KIT, and many members of the Navy's
Design Review Group (DAG) serve on the KIT as well.

3A--7

*. * *- -.... **-.*.. . .* *~ . .

. *...,,.'.. ..-- *. *....-...-..-*... .. **.**** * *-**-, * . -. :

6

La.

R 06

tdJ4J

U~LfJ

LU 4J

qcI

ujI

3A-

4 I&T Plan 7

2.3 KAPSE INTERFACE TEAM (KIT)

The objectives of the KIT are the objectives of the APSE I&T effort (see
-, Section 1.3). The Navy is responsibile for chairing the KIT. The membership

is composed of the following DoD representatives:

o Navy Deputy to the Ada Joint Program Office
0 Naval Ocean Systems Center (NOSC)
o Naval Sea Systems Command (MVSEA/PMS-408)
o Naval Electronics Systems Command (NAVELEX)
o Naval Underwater Systems Center (NUSC)
o Naval Surface Weapons Center (NSWC)
o Naval Avionics Center (NAC) 0
o Naval Air Development Center (NADC)
o Naval Research Laboratory (NRL)
o Naval Weapons Center (NWC)
o Fleet Combat Direction System Support Activity

(FCMSA) - Dam Neck
o Fleet Combat Direction System Support Activity .

(FCDSSA) - San Diego
o U.S. Air Force - Rome Air Development Center (RADC)
o U.S. Air Force - Air Force Wright Aeronautical

Laboratories (AFWAL)
o U.S. Army - Communications and Electronics Comaand
o U.S. Air Force - Information Processing Standards for

Computers (USAF-IPSC) - -
o Johns Hopkins University Applied Physics Laboratory

(JHUAPL)
o National Security Agency
o Canadian National Defense Headquarters

NOSC is the Navy laboratory which provides the KIT chairman. All other
members participate on a volunteer basis, aided as necessary by the AJPO with

* funding for such things as travel expenses. New members will be added to the
KIT at the discretion of the AJPO.

Because of the potentially large membership of the KIT, a management .
• '. steering committee called the KIT Executive Committee (KITEC) has been

established. It consists of the AJPO sponsor (i.e., the AJPO Navy deputy),
* the KIT chairman, the primary support contractor (see Section 2.5), and

selected other KIT members as determined by the sponsor and chairman. The
KITEC is responsible for the planning and management of the APSE I&T effort,
including maintenance of this plan and direction of activities in accordance
with its tasks and schedules.

In addition, the KIT is divided into various working groups for the
purpose of small group concentration on specific technical areas affecting
I&T. The number, objectives, and memebership of such working groups may
change as KIT needs change. _

3A-9
I3..

*.. *...-- .

• ., , . , . - • % - . , - , ° - , - . , - ,S... . . . , . - . - .- .. - . o

I&T Plan 8

2.4 KAPSE INTERFACE TEAM FRCM INDUSTRY AND ACADMIA

The KITIA was formed to complerent the KIT and to generally contribute a
non-DoD perspective to the I&T effort. The KITIA supplements the activities
of the KIT. It assures broad inputs from software experts and eventual users
of APSE's. The KITIA interacts with the KIT as reviewers, as proposers of
APSE I&T requirements, guidelines, conventions and standards, and as
consultants concerning implementation implications. The team was selected
from applicants representing industry and academia. The following are the
members of the KITIA:

Alpha-Omega Group
Aerospace Corporation
Bell Laboratories
Boeing Aerospace
Computer Sciences Corporation
Control Data Corporation
Ford Aerospace
Frey Federal Systems
General Electric
General Research
General Telephone & Electronics Laboratories
Georgia Institute of Technology
Grumman Aerospace
Hazeltine
Honeywell
Hughes Aircraft
IABG (W. Germany)
IBM
Litton
Lockheed
McDonnell Douglas
Norden
PRC
Raytheon
SDC
Teledyne
TNO (The Netherlands)
UK Ada Consortium
Virginia Polytechnic Institute

In addition, the following has been asked to be a special associate member

of the team:

Oy Softplan Ab (Finland)

Membership on the team belongs to a company or university and not to an
individual representing his/her organization. All participation is voluntary,
and the members selected have agreed to provide 1/3 of a man-year plus other
support such as travel expenses. The membership of the KITIA will not be
expanded unless an organization withdraws or very special circumstances apply.

* The AJPO sponsor and KIT chairman are ex officio members of the KITIA.

3A-1O

4 I&T Plan 9

The KITIA elects a chairman and a vice-chairman from amongst its
participants every year. It, too, is organized into working groups who in
turn select their own chairmen. The KITIA chairman and vice-chairman together
with the working group chairmen form the KITIA management committee.

The KITIA is responsible to the AJPO through the KIT chairman. Although
* the KIT has ultimate responsibility for the development of all products

required to meet the I&T objectives, the KITIA participates directly in the
generation and review of such products. In addition, the KITIA generates its

* own contributing papers, products, initiatives, and recommendations to
supplement and guide the basic KIT efforts. This requires close coordination,
which is facilitated by ARPANET communication mechanisms, parallel working
group structures, and joint team meetings.

2.5 SUPPORT CONTRACTOR

Currently there are three contractors that participate on the KIT. TRW is
the primary support contractor, providing general support and technical
initiatives. Texas Instruments is developing an APSE tool in support of the
I&T objectives (see Section 1.3c). SoftWrights provides overall review and
consultation for the AJPO.

Any of these contractors may also serve as a vice-chairman of a KIT
working group.

j
2.6 USER GROUPS AND PROFESSIONAL SOCIETIES

It is anticipated that AdaTEC, the Ada-JOVIAL Users Group (Aa-JUG), and
Ada Europe will provide valuable contributions to the APSE I&T effort. The

*KIT and KITIA have no formal relationship with these groups; however, the
KITEC will use some or all of these groups as regular forums for the
presentation of reports and technical results and will solicit feedback from

. their members.

2.7 STANDARDS ORGANIZATIONS

The American National Standards Institute (ANSI) and the International
Standards Organization (ISO) are standards organizations which are already

' involved in establishing the Ada programing language as a broadly recognized,
enforceable standard. It is possible that the results of this I&T effort will
be submitted for such approval by these organizations as well, to effect the 9

* commonality of APSE's deemed necessary to achieve 1)oD's life-cycle objectives.
The KIT initially will become familiar with the organizations' standardization
procedures so that future standardization actions can be planned and

.. accomplished with minimum difficulty. This will include the study of existing
standards which may interact with or guide the development of APSE I&T
standards.

3A-11 *-.

*~. . :- * * - * * - -.

. "-N. . .

I&T Plan 10

2.8 LIAISON WITH IMPLEMENTATION EFFORTS

A number of implementation efforts have been undertaken by organizations
outside of the DOD. Three of these (the U.K. Ada Consortium, the West German
IABG and U.C. Irvine) have participated on the KITIA. Others include the
European Economic Community, ROLM Corporation, Western Digital, and Telesoft,

" just to name a few. The KIT will keep such organizations informed of its
activities and will consider all feedback received from them.

3

3A1

.- .

C . - . .- - -~ -. , .. .

I&T Plan 11

3.0 APSE I&T PLAN

This section shows the Work Breakdown Structure (WBS) for the I&T effort
as well as the schedules and milestones for the WBS elements. Figures 2 thru
7 provide an overview for the WBS elements. Figure 8 provides a summary of
the schedule.

* S,

3.1 WORK BREAKDOWN STRUCTURE

A discussion of the major elements in the WBS is presented below.

Detailed task descriptions are contained in Appendix E.

1000 APSE Interoperability & Transportability Management

This WBS element covers the general management tasks required to
r accomplish the APSE I&T objectives. It includes general project and team -_

management, project planning, general meeting and team support and
configuration management.

2000 APSE Interoperability & Transportability Analysis

This WBS element covers the technical analysis tasks required to
accomplish the APSE I&T objectives. It includes resource reviews,
requirements development, and performance of special studies.

3000 APSE Interoperability & Transportability Standards

This WBS element describes the standardization tasks required to
I* accomplish the APSE I&T objectives. It includes guidelines and conventions

development, specification development, compliance and validation formulation,
common APSE interface set analysis, and definition of the standardization

• .process.

" 4000 APSE Interoperability & Transportability Tbols

This WBS element describes the development of APSE tools that support the 0

APSE I&T objectives. It includes planning and acquisition of tools, tool
development, test and analysis, and maintenance and modification of developed
tools.

3A-13

........... . .,,. *

-12

EI

s-ul

zoz

'-41

3A-14

13

C -

IO

IdhJS"

4K.I.-MP

3A-1 5

V 14 -

39

U4 C
CI M QL

C~l A-

S~

3A-i 6to
Ln cr c

L15

C"

LLS

Lai

0.

IL

C)C

tn

CLL

Lai,

3A-1 -

16

LLL0

t;
L I-

CDIA

3A-18-

M LU
-C =

-C US

-i iD

4.'

4n L

41~

10
US U - C

0: CQ
Ln,

04.

In Q

41

II

3A-1-

.30

.3- -.

Kt

cn4

> -

mt.

t> -

aa
S --

1 1

4>

3 .3 _ I>

>

Uo ft ->

I- -> I a >

'aL

>i

JA-2

I&T Plan 19

5000 APSE Coordination with implementation Efforts

This WBS element describes the tasks affecting various APSE developmnent
efforts required to support the APSE U&T objectives. It includes public
reviews of the AIE and AIS, developm~ent of an initial Common APSE Interface
Set, I&T analysis of AIE and ALS, and liaison with other implementations.

*V-7

3A-21

U&T Plan 20 -

4.0 PROVISIONS FOR SPECIAL NEEDS

This APSE IUT Plan emphasizes the developmient of requirements, conventions
and standards. It is unusual in that it is written for a programm~ing language
support environment that is in the development state. At this point in
developm~ent it is essential for the KITEC to provide an IUT forum and act as a
focal point for the Ada commnity, APSE developers and the DoD. This will
provide broad input to the KIT frms which a complete, realistic set of U&T
requirements, guidelines, conventions and standards will be developed that
respond to ongoing APSE developmnent and long term APSE needs.

Normally to achieve APSE U&T the APSE itself would be written in Ada.
However, STONEM4AN recognizes that win cases where there is a large current
investment in software projects, written originally in other languages,
provisions and guidelines must be developed that account for cost effective
transitions to Mda environments. In the development of APSE IUT requirements,
conventions, and standards the KITEC should provide cost benefit analysis with
respect to their recommendations and decisions concerning implementation.

During the initial phase of carrying out this APSE IUT plan the KITEC will
be studying and contributing to the IUT aspects of APSE developments by the
Army and Air Force (AIS and AIE). Wken the Navy begins its development of an
APSE the KITEC will also concern itself with the I&T aspects of its design.
The KITEC will develop requirements, conventions, and standards that can be
used for validation testing. In addition APSE development by the private-
sector and international development will be addressed. Criteria for-
validation testing for all APSE development efforts should be established. In
the future a central agent can perform I&T validation testing on each APSE.

7emodel for a strong central validation capability is the Mda Compiler
Validation Facility.

3A-22

---.- " ..

S

APPENDIX A

GLOSSARY 0

GLOSSARY OF TERM

Ada-JUG Ada-JOVIAL Users Group P
AIE Ada Integrated Envirorment
AJPO Ada Joint Program Office
AIS Ada Language System
ANSI American National Standards Institute
APSE Ada Programming Support Envirorment
DIANA Descriptive Intermediate Attributed Notation for Ada
DoD Department of Defense
ECS Embedded Computer System
FCIDSA Fleet Combat Direction System Support Activity
GCS Guidelines, Conventions and Standards
HOLWG High Order Language Working Group
IOC Initial Operational Capabilities p_.-
ISO International Standards Organization
I&T Interoperability and Transportability
JCL Job Control Language
JHLLPL John Hopkins University Applied Physics Laboratory

* KAPSE Kernel Ada Programing Support Envirornment
KIT KAPSE Interface Team
KITIA KAPSE Interface Team from Industry and Academia
KITBC EAPSE Interface Team Executive Committee
MAPSE Minimal Ada Programing Support Envirorment
MO Memorandum of Agreement
NAC Naval Avionics Center

- NAEC Naval Air Development Center
NAVELEX Naval Electronic Systems Comand
NAVSFA Naval Sea Systems Comand
NOSC Naval Ocean Systems Center

" NRL Naval Research Laboratory
NSWC Naval Surface Weapons Center
NUSC Naval Underwater Systems Center m
'. C Naval Weapons Center

*RPP Request For Proposal
WBS Work Breadkdown Structure

3 -

~~~3A-23 """

"., ,,., ,_,'_,: ......~~............................ . ......... ,.......... -...... ,.-.......... ....... ...



,6

APPENDIX B

AIE DOCUMENTS

APPLICABLE DOCLMENTS

The following documents are important sources of information relevant to
the KIT effort. While the list does not represent a comprehensive
bibliography on the subject of standardization, interoperability, and
transportability it does constitute information sources essential to the
project. .

AIE Documents
o System Specification for Ada Integrated Evironment, Intermetrics,

November, 1982
o Computer Program Test Plan, Intermetrics, December, 1982
o Ada Integrated Environment Computer Program Development Plan,

Intermetrics, November, 1982
0 Computer Program Development Specification for Ada Integrated

Environment:

Virtual Memory Methodology, Intermetrics, October, 1982
Ada Compiler Phases, Intermetrics, November, 1982
KASE/Database, Intermetrics, November, 1982
MAPSE Command Processor, Intermetrics, December, 1982
MAPSE Debugging Facilities, Intermetrics, January, 1983
Program Integration Facilities, Intermetrics, August, 1983

o Computer Program Interface Specification for Ada Integrated
Enviromet:

Dianna, Intermetrics, December, 1982
Bill, Intermetrics, December, 1982

o Computer Program Product Specification for Ma Integrated
Envi ronment:

Virtual Memory Methodology, Intermetrics, November, 1982
Ada Compiler Front End, Intermetrics, November, 1982
Ada Compiler Middle End for the IBM 4341, Intermetrics,
January, 1983
Ada Compiler Back End for the IBM 4341, Intermetrics
January, 1983
XPSE Run-Time Support, Intermetrics, February, 1983

3A-24

*. . . ..%-....;.,
" '' "
--r "".... . ....

"
.... . ..il 1 ll

-
... . ... " . ."-. . .. .... .



AIE DOCUMENTS B-2 i

KA.PSE Simple and Composite Objects, Intermetrics, February,
1983

Program Integration Facility: Program Builder, Intermetrics,
November, 1983

o Computer Program Test Procedures for Ada integrated
Environm~ent:

Virtual Memory Methodology, Intermetrics, November, 1982
* Ada Compiler Front End, Ttermetrics, December, 1982

Ada Compiler Middle Part, Intermetrics, January, 1983
Ada Compiler Back End, Intermetrics, January, 1983
MCPSE Run-Time Support, Intermetrics, May, 1983
Program Builder, Intermetrics, November, 1983

3A-25



APPENDIX C

ALS DOCNT

APPLICABLE DOCUMENTS

The following documents are important sources of information
relevant to the KIT effort. hile the list does not represent a comprehensive
bibliography on the subject of standardization, interoperability, and
transportability it does constitute information sources essential to the
project.

ALS Documents
o ALS Retargeting Manual, SofTech, November, 1983
O ALS Operators Manual, SofTech, November, 1983
o ALS Specification, SofTech, November, 1983
o ALS KAPSE - B5 Specification, SofTech, November, 1983 - -

o ALS VAX-1/780 Linker - B5 Specification, SofTech, November, 1983 - -
o ALS VAX-11/780 Code Generator - B5 Specification, SofTech,

November, 1983
o ALS VAX-11/780 Assembler - B5 Specification, SofTech, November,

1983
o ALS VAX/VMS Linker - B5 Specification, SofTech, November 1983 -
o ALS VAX/VMS Symbolic Debugger - B5 Specification, SofTech,

November 1983
o ALS VAX/VMS Frequency Analyzer - B5 Specification, SofTech,

November 1983
o ALE VAX/VMS Statistical Analyzer - B5 Specification, SofTech,

November 1983
o ALS Command Language Processor - B5 Specification, SofTech, -

November 1983
o ALS Database Manager - B5 Specification, Sof~ech, November 1983
o ALS Configuration Control Tools - B5 Specification, SofTech,

November 1983
o ALS KAPSE - B5 Specification, SofTech, November 1983
o ALS Machine Independent Section - B5 Specification, SofTech,

November 1983
o ALS File Administrator - B5 Specification, SofTech, November 1983
o ALS Display Tools - B5 Specification, SofTech, November 1983
o ALS VAX/VMS Code Generator (Vol. I & II) - CS Specification,

SofTech, November 1983
o ALS VAX/VMS Runtime Support Library (Vol. I & II) - C5

Specification, SofTech, November 1983
o ALS VAX/AMS Assembler - C5 Specification, SofTech, November 1983
o ALS VAX/VMS Linker - C5 Specification, SofTech, November 1983

3A-26



ALS DOCUENTS C-2

o ALS VAX/VMS Symbolic Debugger (Vol. I & II) - C5 Specification,
SofTech, November 1983

o ALS VAX/VMS Frequency Analyzer - C5 Specification, SofTech,
November 1983

o ALS VAX/VMS Statistical Analyzer - C5 Specification, SofTech,
November 1983

o AI.S Comtand language Processor - C5 Specification, SofTech,
November 1983

o ALS Database Manager (Vol. I & II) - C5 Specification, SofTech,
SNovember 1983

o ALS Configuration Control Tools - C5 Specification, SofTech,
November 1983

o ALS KAPSE - C5 Specification, SofTech, November 1983
o ALS Machine Independent Section (Vol. I, II & III) - C5

Specification, SofTech, November 1983
o ALS File Administrator - C5 Specification, SofTech, November 1983
o AIS Display Tools (Vol. I & II) - C5 Specification, SofTech,

November 1983
o ALS Interim Ada-to-Pascal Translation Tool Language Reference

Manual, SofTech, January 1984
o ALS Coding Conventions and Naming Rules Manual, SofTech,

January 1984
o ALS Regeneration Kit Manual, SofTech, January 1984

3-- -7

4.-... I

... . . .. . . . . . . . . . . . . . . . . . . . . . . .
.. . . . .. . . . . . . . . . . . . . . . . . . . . . . . .

-at_ P att.. gD* S S*-- a~~



APPENIDIX D

OTHER DOCME1DS

Other Documents

o Requirements Plor High Order Computer Programuing Languages:
STEELMAN, DoD, Junle 1978

o Requirements for Ada Programming Support Environments, STONEAN,
tDD, February 1980

o Interface Analysis of the Ada Integrated Environment and the Ada
Language System, J.M. Fbid1, TRW., October 1982.

o Kernel Ada Programuing Support Envirornent (KAPSE) Interface Team:-
Public Report, Volume I, Naval Ocean Systems Center, Technical
Documnent 509, 1 April 1982.

3A-28



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983 .
ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 1110 WBS ELEMENT TITLE: Team Management

PART OF WBS ELEMENT: 1100 - Project Management

DELIVERABLES/MILESTONES: Continuous •

RESPONSIBILITY: NOSC Code 8322 with KITIA Chairman support

TASK DESCRIPTION: Assemble original teams. Coordinate the solicitation and
selection of new members. Organize team structure into working groups.

Coordinate KIT and KITIA activities separately and together. Organize and
coordinate all team meetings. Assign team and working group tasks and see to

their completion. Plan and chair meetings. Coordinate the raising and
resolution of issues.

NOTES:

3A--2
3A-29 - .-.

..................................-........... o. , . ,. . ., ., o - %, - -° - w, -,- -°,



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 1120 WBS ELEMENT TITLE: Presentations and Briefings

PART OF WBS ELEMENT: 1100 Project Management

DELIVERABLES/MILESTONES:

Project Review May 1983

Senior Management Brief Summer 1983, Spring 1984

AdaTec Conference October 1983
October 1984
October 1985

RESPONSIBILITY: NOSC Code 8322 with AJPO support

TASK DESCRIPTION: Prepare slides and narration on team objectives, status,

progress and plans. Present materials at project reviews, senior management

briefings, AdaTEC conferences, symposia, etc.

NOTES:

3A-30. . . . . . . . . . . .|. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .

" m m..i. .i. ..lll.l. . . . . .... . . . .



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

* ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 1130 WBS ELEMENT TITLE: Coordination with Software Technolog.
:" ~ ~Initiative (.STI),'".

* PART OF WBS ELEMENT: 1100 Project Management

DE.IVERABLES/MILESTONES: Continuous

RESPONSIBILITY: NOSC Code 8322 with AJPO

i TASK DESCRIPTION: Attend STZ workshops. Cooperate with STI personnel to assure

proper incorporation of KIT/KITIA work into STI plans.

I. - "

NOTES:
L 

"

7..., 
.. -..

3A-31

... .. . . ,.

.. 1...~~~~~~~~~ -- - -- - -- - -- - -- - -- - -- - -- - -- - -



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 1140 WBS ELEMENT TITLE: Coordination with Standards Community

PART OF bBS ELEMENT: 1100 Project Management

DELIVERABLES/MILESTONES: Continuous

RESPONSIBILITY: NOSC Code 8322 with AJPO support .. -

TASK DESCRIPTION: Keep standards community apprised of team activities and

progress, primarily through cooperation with Bill LaPlant, IPSC. Submit

descriptions and reports as requested. Locate and track relevant standards

activities.

- . :

NOTES:

I:.. ' -: :

3A-32

" .o,.,



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS LEMNT N: 150 WS EEMEN TILE: ontact

PART OF WBS ELEMENT: 1100 Project Management

DELIVERABLES/MILESTONES: Continuous

RESPONSIBILITY: NOSC Code 8322

19 TASK DESCRIPTION: Initiate contracts and/or tasking necessary to achieve

* project objectives. At minimum, this includes contracts for tools and general
support. Monitor progress including reviews and examination of deliverables.
Coordinate the incorporation of results of contracts into general KIT/KITIA

* work.

N4OTES:

-. 3A-33



~- - *-.-

WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 1210 WBS ELEMENT TITLE: Management Plan

PART OF WBS ELEMENT: 1200 Planning

DELIVERABLES/MILESTONES:

APSE I&T Management Plan April 1983
January 1984
January 1985 -.

- .

RESPONSIBILITY: NOSC Code 8322

TASK DESCRIPTION: Plan activities as necessary to complete the APSE I&T - -

project. Document all plans in the APSE I&T Management Plan. Update this plan

once a year, or more often if radical changes occur.

NOTES: An earlier version of this plan was published as CDRL Item AO01 of -

Delivery Order #7N45 on TRW Contract NOO123-80-D-0242.

3A-34

---. .'- ."..-

.q *°-- - . .,



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983 0

ORIGINATOR: NOSC REVISION:

REVISION DATE:

0

WBS ELEMENT NR: 1220 WBS ELEMENT TITLE: Funding Allocation .-:-

1 PART OF WBS ELEMENT: 1200 Planning

DELIVERABLES/MILESTONES: Budget updates quarterly

RESPONSIBILITY: NOSC Code 8322

TASK DESCRIPTION: Establish budget for project activities. Secure funds as

required. Manage the distribution and expenditure of funds by NOSC, contractors

and other agencies. Update budget as necessary.

NOTES:

3A-5..

:::: . :.,'.-

:. . . . . . . . . . . . . . . . . . . .. '.,-!-



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:
REVISION DATE:

WBS ELEMENT NR: 1230 WBS ELEMENT TITLE: Strategy

PART OF WBS ELEMENT: 1200 Planning

DELIVERABLES/MILESTONES:

APSE I&T Implementation Strategy May 1983

RESPONSIBILITY: NOSC Code 8322

TASK DESCRIPTION: Establish., plan and document the strategy to be followed by -

KIT/KITIA in pursuit of APSE I&T objectives. Reflect this strategy in all
plans, budgets and task assignments.

I . .

NOTES: r

3A-36

. ..



I- - S. . . . . . . . . . . . .. -: , . _ r _,. : _ : : :_

WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

-:. WBS ELEMENT NR: 1310 WBS ELEMENT TITLE: Meeting Support --:--

m 0
PART OF WBS ELEMENT: 1300 Administrative Support

DELIVERABLES/MILESTONES: All support is required quarterly in conjunction with
• regular KIT/KITIA meetings. Other support is also required for special meetings .

and some working group activities.

RESPONSIBILITY: Support Contractor with NOSC Code 8322.

TASK DESCRIPTION: Provide technical support required in planning, preparing

for, conducting and reporting on APSE I&T meetings. Support includes, but is
U not limited to, the provision of agendas, discussion copies of papers, meeting

arrangements, minutes and attendee lists.

.I- -°0

NOTES:

3A-37

.:- .? -...-

....................................... "..



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 1320 WBS ELEMENT TITLE: Team Support

PART OF WBS ELEMENT: 1300 Administrative Support

DELIVERABLES/MILESTONES: Continuous

RESPONSIBILITY: Support Contractor with NOSC Code 8322

TASK DESCRIPTION: Provide technical support required for maintenance, storage, -

updating and distribution of documents and data of the APSE I&T project.

Support includes, but is not limited to, maintenance of address lists, document

control, working paper preparation and ARPANET directory administration, such as

for KIT-INFORMATION and various comment directories.

NOTES:

3A-38

......................................................

...............................................................



I .. ..

WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

,., WBS ELEMENT NR: 1331 WBS ELEMENT TITLE: Requt rements, Guidel ines,

": ~~Conventions and Standards .-.--

PART OF WBS ELEMENT: 1330 Publications/1300 Administrative Support

DELIVERABLES/MILESTONES:
I

Requirements December 1983

Guidelines/Conventions June 1985

Standard December 1984
December 1985

RESPONSIBILITY: NOSC Code 8322 with Support Contractor

TASK DESCRIPTION: Generate final versions of all named documents. Submit them
. to all appropriate publication processes. Provide for their distribution to the

KIT/KITIA and to the public through NTIS.

* I-

NOTES:

3

:.. . . .... . . . . . . . . . . . .



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 1332 WBS ELEMENT TITLE: Public Reports

PART OF WBS ELEMENT: 1330 Publications/1330 Administrative Support

DELIVERABLES/MILESTONES:

Public Report Vol. III April 1983
Public Report Vol. IV October 1983
Public Report Vol. V April 1984
Public Report Vol. VI October 1984
Public Report Vol. VII April 1985
Public Report Vol .VIII October 1985

RESPONSIBILITY: NOSC Code 8322 with Support Contractor

TASK DESCRIPTION: Generate publishable versions of all public reports. This

includes determination and acquisition of contents, reformatting as necessary,
organization, submission to publication process, distribution, notification of

report availability and maintenance of the notification addressee list. Public

distribution will be through NTIS. - -.-

NOTES:

3A-40



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 1340 WBS ELEMENT TITLE: Correspondence

PART OF WBS ELEMENT: 1300 Administrative Support

DELIVERABLES/MILESTONES: Continuous

RESPONSIBILITY: All participants

TASK DESCRIPTION: Conduct communications as necessary, particularly using the At

ARPANET. NOSC requirements in this element include the provision of terminals,
ports and other required facilities in support of NOSC's other tasks.

NOTES: 0

US

V. 3A-41

S. . ..

. . . . . . . .. . . . . . . . . . . . . . .. .



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 1400 WBS ELEMENT TITLE: Configuration Management

PART OF WBS ELEMENT: 1000 APSE ]&T Management ..

DELIVERABLES/MILESTONES:

Configuration Management Report December 1983

RESPONSIBILITY: NOSC Code 8322 with Support Contractor

TASK DESCRIPTION: Plan for configuration management of tools developed under

' !this project. Perform configuration management during the project.

.- 9

NOTES:

3A-42

-. *. ... * .: -.. . . .:.



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 2110 WBS ELEMENT TITLE: Relevant Research

PART OF WBS ELEMENT: 2100 Resource Reviews .

DELIVERABLES/MILESTONES: Continuous

RESPONSIBILITY: All participants

TASK DESCRIPTION: Review literature and documentation applicable to I&T

requirements, guidelines, conventions and standards.

NOTES:

3A-43

0-

"~~~~~~._. .... ......... ,........... .-.. ,.,..... ..... .. ,... .. ,., .. , ......................... ,.., .,



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

* lBS ELEMENT NR: 2120 UBS ELEMENT TITLE: Existing Standards

PART OF WBS ELEMENT: 2100 Resource Reviews

DELIVERABLES/MILESTONES: Continuous

RESPONSIBILITY: All participants

TASK DESCRIPTION: Locate and examine relevant standards. Use and/or

incorporate relevant standards as found to be appropriate and applicable.

NOTES: As an example of this, the Operating System Command and Response

Language (OSCRL) User Requirements, Functional Requirements and Design Criteria

have been used as models for the APSE I&T Requirements and Criteria. The OSCRL

documents were developed by X3H1.

3A-44

-.---.- :--....-.-.



,U,- - ,,

WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983 °

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 2210 WBS ELEMENT TITLE: Definitions and Categories

PART OF WBS ELEMENT: 2200 Requirements Development

DELIVERABLES/MILESTONES:

KAPSE Interface Worksheets December 1983 A

RESPONSIBILITY: All participants

l TASK DESCRIPTION: Develop definitions of all relevant terms, particularly
"interoperability" and "transportability". Develop categories of interfaces and -

KAPSE Interface Worksheets describing each of them.

* S

NOTES:

3A-45

_____ _____ _____ * ...-.-.. . . .



......... '.......

WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 2220 WBS ELEMENT TITLE: Requirements and Design Criteria

PART OF WBS ELEMENT: 2200 Requirements Development

DELIVERABLES/MILESTONES:

Requirements and Criteria December 1983

RESPONSIBILITY: All participants

TASK DESCRIPTION: Develop functional requirements and interface design criteria

for a set of interfaces which will achieve APSE I&T. Document and analyze these

requirements and criteria. Analysis will be conducted through public review as

well as team review and will determine completeness, consistency and

feasibility.. . -

NOTES:

3A-46

2. . . . . . . . . . . . . .....-... . . . . . .. ..... .

. . . . . . . . . .. . . . . . . . . .. .. . . . . . . . . - - -



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

.ORIGINATOR: NOSC REVISION:

REVISION DATE:

.0

WBS ELEMENT NR: 2300 WBS ELEMENT TITLE: Special Studies

PART OF biBS ELEMENT: 2000 APSE I&T Analysis 0

DELIVERABLES/MILESTONES:

Workshops and reportS as appropriate

Command Language workshop and report

Configuration Management workshop, June 1983
Configuration Management report, June 1983

RESPONSIBILITY: Various participants

.0~

TASK DESCRIPTION: Conduct technical analyses and studies as required. These

special studies may include such topics as command languages, configuration

management, STONEMAN revision and risks and cost benefits associated with
! various levels of I&T.

1- 0 , ..

NOTES:

L 3A-47

.............. •. *

-A.-.--- AT--lJ.S S-...



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:
I

WBS ELEMENT NR: 3100 WBS ELEM(JT TITLE: Guidelines and ConventionsDevel opment ::'''!

- I)
PART OF WBS ELEMENT: 3000 APSE I&T Standards

DELIVERABLES/MILESTONES:

APSE I&T Guidelines and Conventions Review Draft April 1984 I

p

RESPONSIBILITY: All participants

TASK DESCRIPTION: Develop guidelines and conventions for achieving I&T. These .

supplement and further explain the standard, covering those ideas and approaches
that have not been included in the standard as yet but which are believed to -_ I

contribute to the achievement of I&T.

NOTES:

I.

3A-48 "- -

.2 .2 .o2 . . ,. . - . *...*



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983 0

* ORIGINATOR: NOSC REVISION:

REVISION DATE:

_° 0

WBS ELEMENT NR: 3200 WBS ELEMENT TITLE: Specification Development

PART OF WBS ELEMENT: 3000 APSE I&T Standards 0

DELIVERABLES/MILESTONES:

Standard Interface Set Specification Review Draft December 1984 a

RESPONSIBILITY: NOSC Code 8322 and all participants

TASK DESCRIPTION: Develop the set of interface specifications which will be

- recommended to the AJPO for standardization. Review and analyze these with

respect to conformance with the requirements and criteria and to consistency, -

[] completeness and feasibility.

NOTES:

3 -

..-* * *



AD-A47 648 KERNEL ADA PROGRRMMING SUPPORT ENVIRONMENT (KRPSE) 2/5
INTERFACE TERM PUBLIC REPORT VOLUME 4(U) NAVAL OCEAN
SYSTEMS CENTER SAN DIEGO CA P OBERNDORF 30 APR 84

7UNCLASSIFIED NOSC/TD-552-YOL-4 F/G 9/2 NL

mommmmhhhi7
Ehhmmmmhhhum
mmhmhhmhhhhhu
EohhEmhEEohhhE
smohmhohmhhhoh

I/I/I/Ill/Illm



.2.

11111_!2 4

MICROCOPY RESOLUTION TEST CHART

WA10A SURUEJ 0 SMOAODS-961SA

.. . . .. .. . . . . . .. . . . . . .. . . . . .



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983
ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 3310 WBS ELEMENT TITLE: Compliance Procedures --....

PART OF WBS ELEMENT: 3300 Compliance

DELIVERABLES/MILESTONES:

Compliance Procedures June 1984

RESPONSIBILITY: NOSC Code 8322 with Support Contractor

TASK DESCRIPTION: Develop procedures for determining compliance of an APSE
implementation with APSE I&T requirements, guidelines, conventions and -:-:

standards. Apply these procedures experimentally to the I&T tools and the AIE
and ALS. The results of this task will influence the form the standard --

specification will take.

NOTES: This compliance work will be conducted in close cooperation with the

AJPO Evaluation and Validation team and will form the basis of the KIT/KITIA's
recommendations to this team.

3A-.5

3A-50 . . -



. ...- -.

WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983 0

ORIGINATOR: NOSC REVISION:
REVISION DATE:

WBS ELEMENT NR: 3320 WBS ELEMENT TITLE: Validation Recommendations

PART OF bIBS ELEMENT: 3300 Compl lance S

DELIVERABLES/MILESTONES:

Validation Recommendations December 1985

RESPONSIBILITY: NOSC Code 8322 with Support Contractor

TASK DESCRIPTION: Review the results of the development and application of the

Compliance Procedures (WBS 3310). Formulate recommendations for the AJPO and
its Evaluation and Validation team.

NOTES:

3A-51

"..-. ...- °

-" "-'T T



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 3410 WBS ELEMENT TITLE: Experimental Implementation

PART OF WBS ELEMENT: 3400 Standard Interface Set Analysis -

DELIVERABLES/MILESTONES:

Implementation Report June 1985

RESPONSIBILITY: NOSC Code 8322 with Support Contractor

TASK DESCRIPTION: Experimentally implement and exercise portions of the

proposed standard interface set in order to investigate feasibility, :

completeness, etc. Report results as feedback to be incorporated in final

standard interface set specification.

NOTES:

3A-52 -7-

S... . . . . . ..-- - - - - - -



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT MR: 3420 WBS ELE1MENT TITLE: Public Review.-'-

PART OF WBS ELEMENT: 3400 Standard Interface Set Analysis

DELIVERABLES/MILESTONES: Complete Review June 1985

RESPONSIBILITY: NOSC Code 8322

TASK DESCRIPTION: Present the proposed standard for widespread public review,

I; including an open review meeting. Incorporate all feedback in final docments. I

.NOTES:

3A-53

L L

.................

.......................S:.-..

. . .. . . . . . . . . . . . . *" .* .. .... °.. . .



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 3500 WBS ELEMENT TITLE: Standardization Process "

PART OF WBS ELEMENT: 3000 APSE I&T Standards

DELIVERABLES/MILESTONES: Initiate effort June 1985

RESPONSIBILITY: NOSC Code 8322 with AJPO

TASK DESCRIPTION: Determine steps required to achieve standardization of the

proposed interface set. Pursue standardization.

NOTES: This activity alone among all these tasks may be expected to continue

beyond the lifetime of the KIT/KITIA.

3A-54

. . - .. . ..-.



UBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983 .

ORIGINATOR: NOSC REVISION:

REVISION DATE:

lS

WBS ELEMENT NR: 4100 WBS ELEMENT TITLE: Plans and Acquisition .---..

PART OF bIBS ELEMENT: 4000 APSE I&T Tools 0

DELIVERABLES/MILESTONES:

Plans July 1982

Acquisition October 1983

RESPONSIBILITY: NOSC Code 8322

TASK DESCRIPTION: Identify the objectives, criteria and requirements to be used ,o -

for the selection of three or more APSE tool s. These tools will be used to , .-
further analyze interface requirements. Initiate acquisition of three or more .-

such tools.

NOTES:

3A-55

. -. .~ ..-

. .-



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

*ORIGINATOR: NOSC REVISION:
REVISION DATE:

IB LMN R 20 WSEEMN IL:To eeomn

I PART OF bIBS ELEMENT: 4000 APSE I&T Tools

DELIVERABLES/MILESTONES:--

CMS Design June 1983
AIM Implementation June 1984

Others NLT December 1985

RESPONSIBILITY: Selected Contractors

TASK DESCRIPTION: Design, develop and test tools in *a local environment.
*Install and integrate tools in both the AIE and ALS. Provide insights into

interface issues as they arise during development and integration.

NOTES:

-: 3A-56



p7 7

WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 4300 WBS ELEMENT TITLE: Test and Analysis ",:-.-

PART OF WBS ELEMENT: 4000 APSE I&T Tools 0

DELIVERABLES/MILESTONES: Test Reports June 1985

RESPONSIBILITY: NOSC Code 8322 with Support Contractor

TASK DESCRIPTION: Develop test applications and analyses for determining o

performance of APSE I&T tools in the AIE and ALS. Apply these to tools as they
are completed. •...

NOTES:

3A-57

. . -. . ..

. . . . . . . . . . . . . .,.



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 4400 WBS ELEMENT TITLE: Maintenance and Modifications

PART OF WBS ELEMENT: 4000 APSE I&T Tools

DELIVERABLES/MILESTONES: As required

RESPONSIBILITY: NOSC Code 8322 and Contractors

TASK DESCRIPTION: Provide maintenance of APSE I&T tools as required after their

integration into AIE and ALS. Modify tools in accordance with needs to correct
inadequacies or to respond to changing requirements or environments.

NOTES:

3A-58

. .. . .. . . . .. -,

--. . . . . . . . .. . . . . . . ..--



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 5100 WBS ELEMENT TITLE: Public Reviews of AIE and ALS

PART OF WBS ELEMENT: 5000 APSE I&T Coordination with Implementation Efforts

DELIVERABLES/MILESTONES:

Public Review Reports July 1982 (ALS)
July 1983 (ALE)

January 1984 (ALS)
July 1984 (AIE)

January 1985 (ALS)
July 1985 (AIE)

RESPONSIBILITY: NOSC Code 831

TASK DESCRIPTION: Coordinate the establishment and notification of review

teams. Detemine documents or systems to be reviewed and arrange for

distribution of copies to members of review teams. Receive all team review

reports and correlate into report to AJPO and AIE/ALS sponsor.

NOTES:

. .. . . . . . - .

3A-59
.' 0T- " T



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 5200 WBS ELEMENT TITLE: Initial Standard Interface Set

Development

PART OF WBS ELEMENT: 5000 APSE I&T Coordination with Implementation Efforts

DELIVERABLES/MILESTONES:

Initial SIS Draft Report June 1983

RESPONSIBILITY: Selected participants with NOSC Code 8322

TASK DESCRIPTION: Review AlE and ALS to determine a set of interfaces which is

implementable in both of these systems. Develop a specification report
documenting these interfaces. This task is to be accomplished with

participation of AIE and ALS personnel.

NOTES:

3A-60



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983 S

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 5310 WBS ELEMENT TITLE: KIT/KITIA Coordination.'--:

PART OF WBS ELEMENT: 5300 AIE/ALS I&T Analysis

DELIVERABLES/MILESTONES: Continuous

RESPONSIBILITY: NOSC Code 8322

TASK DESCRIPTION: Provide channels of communication between KIT/KITIA members

and government and contractor personnel involved in the AIE and ALS
developments. Arrange for meetings and distribution of relevant documents.

Provide feedback to AIE and ALS developers.

NOTES:

3A-61

..................................



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983

ORIGINATOR: NOSC REVISION:
REVISION DATE:

WBS ELEMENT NR: 5320 bIBS ELEMENT TITLE: Analysis and Recommendations

DELIVERABLES/MILESTONES: Analysis Report January 1985

RESPONSIBILITY: Various participants

TASK DESCRIPTIONI: Analyze AlE and ALS interfaces with respect to I&T. Provide
recommiendations for evaluation of each system to meet the interface set as it is
put forward for standardization.

NOTES:

3A-62



WBS ELEMENT DESCRIPTION ORIGINAL DATE: 30 April 1983 S

ORIGINATOR: NOSC REVISION:

REVISION DATE:

WBS ELEMENT NR: 5400 WBS ELEMENT TITLE: Liaison with Other Implementations "

PART OF WBS ELEMENT: 5000 APSE I&T Coordination with Implementation Efforts 0

DELIVERABLES/MILESTONES: Continuous

LS

RESPONSIBILITY: All participants

TASK DESCRIPTION: Maintain awareness of and contact with groups who are doing

non-DoD APSE implementations. Solicit their inputs and provide information on
KIT/KITIA activities. Examples of such groups are the UK, IABG in W. Germany,

the EEC, ROLM and UC Irvine. '.

NOTES:

3A-63

" - .° .-

S. .. . . . . . . . . . . . . . . .

- .- - - . 2. . . .. . . . . . . . . . . . . . . . . . . . . .



NOTE: This draft, dated 30 September 1983, prepared for0
the Ada Joint Program Office, has not been approved and
Is subject to modification. DO NOT USE PRIOR TO
APPROVAL.

Draft Specification

of the

Common APSE Interface Set (CAIS)

Version 1.1
30 September, 1983

Prepared by

KITIKITIA
CAIS Working Group

for the
Adalv Joint Program Office

(9 Ada isa "egstered Trademark of the Department of Defense, Ada Joint Program Office)

3B1-1



Draft CAIS 111

FORWORD

This document is a draft for public review. It will be revised in accordance with comments received during this public
review cycle.

This document has been prepared in response to the Memorandum of Agreement signed by the Undersecretary of Defense
and the Assistant Secretaries of the Air Force, Army, and Navy. The memorandum established agreement for defining
a set of common interlaces for the Department of Defense (DoD) Ada Programming Support Environments (APSEs)
to promote Ada tool transportability and interoperability. The initial phase of this effort is directed toward the interfaces
of 1he Ada Integrated Environment (ALE) and the Ada Language System (ALS). This version derives a set of specific
interfaces from these two APSEs, but the CAIS is intended to be implementable as part of a wide variety of intended
APSEs. It is anticipated that the CAIS will evolve, changing to meet new needs. Ultimately it is the intention of the DoD
to submit CAIS for standardization. Through the acceptance of such a standard it is anticipated that the source level
compatability of Ada software tools will be enhanced for both the DoD and non-DoD users.
The authors of this document include technical representatives of the two DoD APSE contractors, representatives from
the DoD's Kernel Ada Programming Support Environment (KAPSE) Interface Team (KIT), and volunteer representatives .. .

from the KAPSE Interface Team, Industry and Academia (KITIA).

The initial effort for definition of the CAIS was begun in September 1982 by the following members of the KAPSE Inter-
face Team (KIT): J. Foidl (TRW), J. Kramer (Ada Joint Program Office), T. Oberndorf (Naval Ocean Systems Center),
T. Taft (Intermetrics), R. Thall and W. Wilder (both of SofTech). In February 1983 the design team was expanded by
Lcdr. B. Schaar (Ada Joint Program Office) to utilize the professional capabilities and experience of the KIT and KAPSE
Interface Team from Industry and Academia (KITIA). These new members include: H. Fischer (Litton Data Systems), . -

T. Harrison (Texas Instruments), E. Lamb (Bell Labs). T. Lyons (Software Sciences Ltd., U.K.), D. McGonagle (General
Electric). H. Morse (Frey Federal Systems), E. Ploedereder (I.A.B.G., West Germany), H. Willman (Raytheon), and L.
Yelowitz (Ford Aerospace). The Ada Joint Program Office is particularly grateful to those KITIA members and their com-
panies for providing the time and resources that significantly contributed to this document. Additional constructive criticism " " -

and direction was provided by G. Myers (Naval Ocean Systems Center) and the general memberships of the KIT and KITIA. ':

3B-•2

. -•



IV Draft CAtS

0

I3B-



Draft CAIS v

CONTENTS

FO R EW O R D ......................................................................... ii i i
CONTENTS ......................................................................... v

SECTION TITLE PAGE

1. IN T R O D U CT IO N .............................................................. 1.1
1.1 SCO PE O F THE CAIS .................. ............................... 1.1
1.2 EXCLUDED AND DEFERRED TOPICS ..................................... . 1.1
1.3 CO NFO RM ANCE ....................................................... 1-2

1.4 DOCUMENT ORGANIZATION ............................................ . 1.3

2. REFERENCES ................................................................ 2-1

3. CAIS NO DE M O DEL ........................................................... 3-1
3.1 RELATIONSHIPS AND RELATIONS .................................... 3-1

3.1.1 Kinds of Relationships.......................................... 3-1 - ".
3.1.2 Predefined Relations ............................................. 3 2
3.1.3 Pathnam es ..................................................... 3-2

3.2 ATTRIBUTES .. ................................. .................. .. . 33 . .. -

3.3 GENERAL NODE MANAGEMENT .................................... 3-4
3.4 PACKAGE CAIS.NODE. DEFS .......................................... . 3-4

3.4.1 Package Specification ............................................. 3-4
3.4.2 Package Semantics ..................... ........................ 3-5

3.5 PACKAGE CAIS-NODE MANAGEMENT .................................. 3-5 " .,
3.5.1 Package Specification ............................................ 3-5
3.5.2 Package Sem antics .............................................. 3-7

3.6 PACKAGE CAIS - ATTRIBUTES ......................................... 3-11
3.6.1 Package Specification ............................................ 3-11
3.6.2 Package Sem antics .............................................. 3-12 ,__..

3.7 PACKAGE CAIS-NODE -CONTROL ...... .. . .. .. . . .. . .. .. . . .. . .. .. . . .. . ..  3-14 -*

3.7.1 Package Specification ............................................ 3-14
3.7.2 Package Sem antics ......... .................................... 3-15

3.8 P R A G M AT IC S ...... ................................................. 3-15 . . ,

4. CAIS STRUCTURAL NODES ........................................... ...... 4-1
4.1 PACKAGE CAIS-STRUCTURAL-NODES ............... ..... . 4-1

4.1 1 Package Specification ............................. ..... ... . 4-1
4.1.2 Package Semantics ....... 4-1

5 CAIS FILE NO DES . ....... . ....... ....... . . 5-1
5.1 Ada LRM INPUTIOUTPUT .............. .. ..... ......... ........ 5-1

5.1.1 Package IO -EXCEPTIONS ............... ... .............. 5-1
5 1.2 Package SEOUENTIAL-0 .................................... 5-1
5.1.3 Package DIRECT -10 ............................................ 5-2
5.1.4 Package TEXT -1O .............................................. 5-2

5.2 CAIS INPUT/OUTPUT ................................................ .. . 5-2 .-

5.2.1 CAIS File M anagem ent ........................................... 5-2
5.2.2 Package CAIS-SEOUENTIAL..IO ........................ 5-3
5.2.3 Package DIRECT -1O ............................................ 5-3
5.2.4 Package TEXT -1O .............................................. 5-3
5.2.5 Package CAIS-INTERACTIVE_.b0. 5-4"

3B-4

' 
, I q "% %

•" % "%• "" .
• •

"- , 
' ° •

-"
•

' "" ." .
'

. °.° . °.• •_ .•, • " . " • ' . - . ° j •. ° - •



vi Draft CAIS 0

5.2.5.1 Package Specification .................................... 5-4
5.2.5.2 Package Semantics ...................................... 6-5

5.3 PRAG M ATICS ......................................................... 5-7
.

6. CAIS PROCESS NODES ........................................................ 6-1
6.1 PACKAGE CAIS-PROCESS .DEFS ...................................... 6-1

6.1.1 Package Specification ........................................ 6-1
6.1.2 Package Semantics .. .......................................... 6-2

6.2 PACKAGE CAIS.PROCESS-CONTROL ................................ 6-3
6.2.1 Package Specification ............................................ 6-3
6.2.2 Package Semantics ............................................. . 6.4

6.3 PACKAGE CAIS.PROCESS-COMMUNICATION ........................... 6-6
6.3.1 Package Specification ............................................ 6-6
6.3.2 Package Semantics .............................................. 6-7

6.4 PACKAGE CAJS&PROCESS.._ANALYSIS ................................. 6-7
6.4.1 Package Specification ............................................ 6-8

6.5 PACKAGE CAIS.PROCESS.INTERRUPTS ................................ 6-8 •
6.5.1 Package Specification ............................................ 6-8
6.5.2 Package Semantics ............................................. . 6-8

6.6 PRAGM ATICS ......................................................... 6-9

7. CAIS DEVICE NODES .......................................................... 7-1
7.1 VIRTUAL TERMINALS .................................................. 7.1,, -- 

7.1.1 Package CAIS-TERMINALSUPPORT ............................ .7.1 .. •
7.1.1.1 Package Specification .................................... 7-17.1.1.2 Package Semantics 7.27.1 1. P ck ge em ntcs ....................................... 7-2211i

7.1.2 Package CAIS-SCROLLTERMINAL .............................. 7-4
7.1.2.1 Package Specification .................................... 7-5
7.1.2.2 Package Semantics ...................................... 7-5

7.1.3 Package CAIS_PAGP..TERMINAL ................................ 7-7
7.1.3.1 Package Specification ..................................... 7-7 _ _

7.1.3.2 Package Semantics ...................................... 7-8
7.1.4 Package CAIS-FORM.TERMINAL ............................... 7-11

7.1.4.1 Package Specification ....................... ............. 7-11 . .--.

7.1.4.2 Package Semantics............. .......... ............... 7-12
7.2 PACKAGE CAIS-DEVICE-CONTROL .................................... 7-14

7.2.1 Package Specification ............................................ 7-15

6. C A IS U T ILIT IES ............................................................... 8-1
8.1 PREDEFINED LANGUAGE ENVIRONMENT ................................ 8-1

8.1.1 Package STANDARD ............................................ 8-1
8.1.2 Package SYSTEM ................................................ 8-1

8.2 PREDEFINED UTILITY PACKAGES ....................................... 8-1
8.2.1 Package CAIS .TEXT. UTILS .................................... 8-1

8.2.1.1 'Paqkage Specification .................................... 8-1
8.2.1.2 Package Semantics ............................ ........ 8-2

8.2.2 Package CAIS-LISTUTILS ..................................... 8-4
8.2.2.1 Package Specification .................................... 8-4
8.2.2.2 Package Semantics ..................... ............ 8-5

8.3.2 Package CAIS HELP.UTILS .................................... 8-7
8.3 PRAG M ATICS ......................................................... 8-7

APPENDICES

A. NOTES AND EXPLANATIONS ........................... .......... ............. A-1

B. PROVIDING DIRECTORY STRUCTURES BY A CONFORMING SUBSET OF THE CAIS .... B-1

C. DISCUSSION OF CAIS IMPLEMENTATION APPROACHES ........................... C-1

3B- 5

.-..-..-................... "°.....-:" ''"''' .. ''''.. '',.. -"-" ," " ." "-", -i'2' " , -- " ' '- - " -... ' -:-, ' -"- ",' . -, . . .- ,.- . . . . . "." '--



1. INTRODUCTION

This document provides specifications for a set of Ada packages which together form a Common APSE Interface Set
(CAIS) for Ada Programming Support Environments (APSEs). This interface set is designed to promote the source-level
portability of Ada programs, particularly Ada software development tools. The initial phase of this effort is directed toward
the interfaces of the Ada Integrated Environment (ALE) and the Ada Language System (ALS). Version 1.1 of the CAIS,
presented herein, is intended to provide the basis for evolution of the CAIS as APSEs are implemented, as tools are . ".-
transported, and as tool interoperability issues are encountered.

Tools written in Ada, using only the packages described herein, should be transportable to other CAIS implimentations.
However, where tools function as a set, the CAIS facilitates transportability of the set of tools as a whole, but individual - -

tools may not be individually transportable.

1.1 SCOPE OF THE CAIS

This version of the CAIS establishes interface requirements for the transportability of Ada
toolsets software to be utilized in Department of Defense (DoD) Ada Programming Support Environments (APSEs) known . ..
as the Ada Integrated Environment (ALE) and the Ada Language System (ALS). Strict adherence to this interface set
will ensure that the Ada toolsets will possess the highest degree of portability across APSEs.

The scope of the CAIS includes interfaces to those services traditionally provided by an operating system that affect
tool transportability. Ideally, all APSE tools would be implementable using only the Ada language and the CAIS. This
version of the CAIS is intended to provide most interfaces required by common tools. This version of the CAIS includes
six interface areas:

a. Node Model. This area presents a node model for the CAIS in which contents, relation-
ships and attributes of nodes are defined. Also included are the foundations for access
control and synchronization.

o. Structural Nodes. This area covers the creation of structural nodes.

c. File Nodes. This area covers file input/output.

d. Process Nodes. This area covers creation of processes for program invocation, control
of processes, process attribute management. and inter-process communication.

e. Device Nodes. This area covers basic device inpuVoutput support, along with special device
control facilities.

f. Utilities. This area covers text and list manipulation.

1.2 EXCLUDED AND DEFERRED TOPICS

During the design of the CAIS many aspects of environments have been considered. It has been determined that several
aspects should be explicitly excluded from this version of the CAIS:

Interfaces for non-software development environments (target systems) are not a part of this version.

38-6

...................................................... I ....- "...---..... ,-.- -.. ,-



1-2 Draft CAIS _ 7

The acronyms KAPSE and MAPSE are not used in this document because there is disagreement on their
meanings.

Multi-lingual environments are not addressed by the CAIS. 0

A number of interface issues remain unresolved in this version of the CAIS, even though they have been considered.
These issues are important for a complete interface specification, but their resolution has been deferred until a later
version. Deferred interface issues (in alphabetical order) include:

Access control - Access rights and privileges to system resources.

Asynchronous interfaces - Most interfaces in this document are task synchronous
interfaces (i.e., the specified operation is completed before the calling task is allow-
ed to proceed.)

Communications transformation - filtering of data before receipt by processes,
mappings (lower case to upper case, break, key to escape sequence), terminator
character for input.

Configuration management - configuration control including keeping versions.
referencing the latest revision, identifig the state of an object, etc.

Device control - Controls for printers, tape drives, disk drives, graphics, window- F.' .
ing, etc.

Distributed environmnents - Explicit support for environments in which parts of Ada
programs or data bases are distributed across multiple processors.

Interoperability - Inter-tool interfaces for tool sets; calling sequences and data for-
mats used to invoke/interact with common APSE tools, including the compilation/pro-
gram library system, the text editing systems, the command processor, and the mail
system.

Predefined attributes/names - A full set of attributes and names that exist in all
APSEs which implement the CAIS.

Predefined exceptions - A full set of exceptions that exist in all APSEs which im-
plement the CAIS; identification of all situations where exceptions are raised by the
CAIS.

Resource access and management - Resource control and allocation, such as
for processor time, processor memory, and shared data pools.

Security - Mechanisms for handling discretionary and non-discretionary informa-

tion based on classification of the data and system requirements.

Typed database - Typing of the objects in the database organization.

1.3 CONFORMANCE

Conformance of an implementation to the CAIS is established on a package-by-package basis. Each package must
be available as a library unit, with the name specified in this document. From the package user's point of view, the package
must have Indistinguishable syntax and semantics from those stated herein. The following differences in CAIS package
Implementation from the specfications in this document are considered indistinguishable from a user's point of view: 0

3B-7.. .:..;...-...



Draft CAIS 1-3

a) The package may have additional WITH or USE clauses.

b) Parameter modes listed here as OUT may be IN OUT or those listed as IN OUT may be OUT.

c) Types specified as limited private may be simply limited types.

d) Packages may be instantiations of generic sub-packages of some other (private) library
unit package.

Examples of differences which are NOT legal:

a) Additional or missing declarations, as these affect name visibility.

b) Parameter mode IN OUT, as this prevents passing of expressions.

c Limited private types being changed to sub-types or derived types, when this changes the

semantics of "deriving" from the type.

d) Packages which are not available as specified library units, because this changes the means
of reference to package components. -

1.4 DOCUMENT ORGANIZATION

Each of the interface areas described in Section 1.1 is the subject of a subsequent section of this document. A discus-
sion introduces the underlying model for that area. Ada package specifications describe the facilities provided. These
are followed by a narrative of the intended semantics of the package. New terms introduced in the narrative sections "
of the CAIS have been highlighted with boldface type. Boldface type within the package specifications and package -

semantics sections indicate reserved words in accordance with the Ada Language Reference Manual.

3B-8

.-. ...-.....



2. REFERENCES

ILRMJ: Reference Manual for the Ada Programming Language, ANSIIMIL.STD-1815A; United States Department of
Defense; January 1963.

[STONEMAN): Requirements for Ada Programming Support Environments, "Stoneman"; Department of Defense; February
1980.

KERNEL Ada Programming Support Environment (KAPSE) Interf ace Team: Public Report; Volume 1, Naval Ocean Systems

Center TDSO9; April 1982.

APSE Interoperability and Transportability Impleinentation Strategy; Ada Joint Program Office; June 1983.

(ANSI 791: American National Standards Institute, "Americati National Standard Additional Controls for Use with American
National Standard Code for Information Interchange (ANSI Standard X3.64-1979)"; July 1979.

[ANSI 771: American National Standards Inslitute, "American National Standard Code for Information Interchange (AN.
SI Standard X3.4-1977)"; June 1977.

ALS KAPSE - B35 Specification, Soffech; February 1962.

Computer Program Development Specification lor Ada Integrated Environment: KAPSEIDATABASE TYPE B5, lntermetnics
Inc.; 12 Nov 1982.

3B-9
7



3. CAIS NODE MODEL

* The CAIS implementation acts as a manager for a set of entities that may be files, processes, and devices. These en-
titles have properties and may be interrelated in many ways,

The CAIS model uses the notion of a node as a carrier of information about an entity. It uses the notion of a relationship
for representing an interrelation between entities and the notion of an attribute for representing a property of an entity
or of an interrelation.

This version of the CAIS identifies four different kinds of nodes: structural nodes, file nodes, process nodes, and device
IF nodes.

The structure provided by the CAIS node model is a directed graph of nodes, each of which may have content, relation-
ships and attributes; relationships may also have attributes. The content varies with the kind of node. If a node is a
structural node, there is no content and the node is used strictly as a holder of relationships and attributes, If a node
is a file node, the content is an Ada external file, If a node is a process node, the content is the representation of the
execution of an Ada program. If a node is a device node, its content is a representation of a logical or physical device.-

3.1 RELATIONSHIPS AND RELATIONS

The relationships of CAIS nodes form the edges of a directed graph; they are used to build conventional hierarchical
directory and process structures (see Section 4.1 CAIS....STRUCTURAL....NODES, Section 6.2
CAIS-PROCESS.CONTROL and Appendix B) as well as arbitrary directed-graph structures. Relationships are unidirec-

3 tional and are said to emanate from a source node and to terminate at a target node.

Because any node may have many relationships representing many different classes of connections, the concept of
a relation is introduced to categorize the relationships. These relations identify the nature of relationships, and relation-
ships are instances of relations. There are several predefined relations provided by the CAIS. These are: PARENT, USER,
JOB, CURRENT-JOB, CURRENT-..USER, CURRENT-..NODE, and DOT and are explained in the following sections.

I Each relationship is designated by a relation name and a relationship key. The relation name identifies the relation
and the relationship key distinguishes between multiple nodes each bearing the same relation with a given node. If
a relationship is a unique instance of its relation (i.e., only one node bears the relation with a given node), the key may
be omitted (i.e., its value is the null string). In this document, a relation name is often referred to simply as a relation -

and a relationship key is often referred to simply as a key. Nodes in the environment are accessible by navigating along
the (named) relationships. Operations are provided to move from one node (along one of its relationships) to a connected

p node.

3.1.1 Kinds of Relationships

There are two kinds of relationships: primary and secondary. Primary relationships form a strict tree; secondary relation-
ships may form an arbitrary directed graph. There is no requirement that all primary relationships have the same relation

name.

When a node is created, a primary relationship must be initially established from some other node, called its parent
node. This initial relationship is marked as the primary relationship for this new node. As a side effect of the creation,
the new node will be connected back to this parent via the PARENT relation (which, because it is unique, has a null
relationship key). To delete a node, the primary relationship is broken. RENAME (see Section 3.5) may be used to make ~

* the primary relationship emanate from a different parent. These operations maintain a state in which each non-root node
has exactly one parent and a unique primary pathname (see Section 3.1.2).

3B-1 0



3-2 DRAFT CAIS

Secondary relationships are arbitrary connections which may be established between two existing nodes. They are created
with the LINK procedure (see Section 3.5) and broken with the UNLINK procedure. If a node is deleted (i.e.. its primary
relationship is broken), outstanding secondary relationships for which it is the target may remain, but attempts to access -
the node via these relationships will raise an exception.

3.1.2 Predefined Relations

The CAIS node model incorporates the notion of a user. Each user has one top-level node (often called the user direc-
tory). This top-level node is the root of the user's work-area tree, and from it he can access other structural, file, process
and device nodes. Every node may be accessed by following a sequence of relationships; this sequence is called the -
path to the node. A path starting at a top-level node is called an absolute path. Every node can be traced back to its
top-level node by recursively following PARENT relationships; the path obtained by inverting this chain is the unique
primary path to the node.

A path can also start at a known (not necessarily top-level) node and follow a sequence ot ,Slationships to a desired
node. This is a relative path and the known starting node is called the base. lie

Any user's top-level node can be accessed from a proces node using the relation USER and a relationship key which
is interpreted as the user's name. User names may in fact be names of projects, services, people, or other organize-
tional entities; each has a top level node associated with it. It is anticipated that certain special user names will be defin-
ed (as an eventual part of the CAIS) to provide uniform access to common tools, structures, etc.. Each
implementation must identify such user names to be of special significance in the environment.

When a user enters the APSE, a root process node is created which often represents a command interpreter or other
user-communication process; a process tree develops from this root node as other processes are invoked for the user.
A particular user may have entered the APSE several times concurrently. Each corresponding process tree is referred
to as a job. The JOB relation is provided for locating each of these root processes from the user's top-level node. Thus
a JOB relation emanates from each user's top-level node to the root process node of each of the user's jobs. The JOB
relation must always be used with a relationship-key which identifies the name of the particular Ob which is to be accessed.

Any process node in a job has associated with it at least three predefined relations. The CURRENI-JOB relationship . . .!

always points to the root node for a proces. node's job. The CURRENT-USER relationship always points to the user's
top-level node. The CURRENT-NODE relationship always points to a node which represents the process ,ode's cur-
rent locus or context for its activities: the target node is often a structural node. The process node can thus use the
CURRENT-NODE for a base node when specifying relative paths. All three of these relations (CURIENTJOB, - .

CURRENT-USER, and CURRENT-NODE) provide a conveniera means for accessing other CAIS nodes

Many CAIS operations allow the user to omit the relation name when referring to a relationship, deaultir~g it to "DOT".
DOT is therefore referred to as the default relation.

The node model also uses the concept of current process. This is implicit in all calls to CAIS operations and rtefers
to the currently executing process making the call. it defines the context in which the parameters are to be interpreted.
In particular, paths are determined in the context of the current process. S

3.1.3 Pathnames

Nodes are accessed by navigating along the relationships. These paths are specified using a pathname syntax. Starting
from a given node, a path is followed by traversing a sequence of relationships until the desired node is reached. The . . .

pathname for this path is made up of the concatenation of the names of the traversed relatioriships in the same order
in which they are encountered.

The syntax of a pathname is a sequence of path elements, each path element representing the traversal of a single
relationship. A patn element is an apostrophe ( ". pronounced "lick") followed by a relation name and a parenthesz--
ad relationship key (which may be omitted If the relationship is a unique instance of the realeion for this node). If the
relation is the default relation DOT, then the path element may be representod simply by a dot (" . ") followed by the
key for the default relation DOT. Thus, "'OaT(CON1 ROLLER)" is the same as ".CONTROLLER".

3B-1.



Draft CAIS 3-3

Pathnames are interpreted relative to a known node. This node may be identified explicitly as an additional argument,
the BASE, to many of the CAIS operations. Otherwise, the current process node is used as the starting point for inter-
pretation of the path.

* A pathname may begin simply with a relationship key, not prefixed by either"' or".. This is taken to mean inter-
pretation following the DOT relation of the CURRENT-NODE. Thus "AIRPORT" is the same as

'CURRENT-NODE.AIRPORT". By convention, the null pathname .. is interpreted as the CURRENTNODE of
the current process.

A pathname may also consist of just a single " . ". This is interpreted as referring to the current process node.

Relation names and relationship keys follow the syntax of Ada identifiers. Upper and lower case are treated as equivalent
within such identifiers. For example, all of the following are legal node pathnames, and they would all refer to the same
node it the CURRENT-NODE were " 'USER(JONES).TRACKER " and the CURRENT-USER were "JONES":

a. Landing-System'Withunit(Radar)

b. 'User(Jones).TRACKER.Landing-system'with-U NIT(RADAR)

c. 'CU RRENT-USER.TRACKER.LAN DING-SYSTEM'WlTH-unit(radar)

By convention a relationship key of simply "#" is taken to represent the LATEST-KEY (lexicographically last). When
creating a node or relationship, use of "#" as the final key of a pathname will cause a key to be automatically assigned,
lexicographically following all previous keys for the same relation. This may be used to automatically assign revision
identifiers or process keys (see Section 6.2).

The Backus-Naur Form (BNF) for pathnames is given in Table 3-1.

TABLE 3-1

PATHNAME BNF

PATHNAME :: = { PATHELEMENT } -
RELATIONSHIP-KEY { PATHELEMENT I

PATHELEMENT :: = .'" RELATION-NAME (" RELATIONSHIP-KEY ")" I
RELATION-NAME I
RELATIONSHIP-KEY

RELATION-NAME :: = IDENTIFIER
RELATIONSHIP-KEY :: = IDENTIFIER I "N"

3.2 ATTRIBUTES

Both nodes and relationships may have attributes which provide information about the node or relationship. Attributes
are identified by an attribute name. Each attribute (see Section 3.6 CAIS-ATTRIBUTES) has a list of the values assign-
ed to it. represented using the CAIS-LISTUTILS (see Section 8.2.2) type called LIST.

Relation names and attribute names both have the same form (that is, the syntax of an Ada identifier), and they must
be different from each other for a given node.

This version of the CAIS introduces two pre-defined node attributes: ACCESS-CONTROL and SECURITY-LEVEL.

3B-12



3-4 Draft CAIS 0

3.3 GENERAL NODE MANAGEMENT

The operations defined in package CAIS...NODE....MANAGEMENT are applicable to all nodes except where explicitly
Stated otherwise in the package semantics section.

The creation of nodes for files is performed by the CREATE procedures of the Input/Output packages; the creation of
nodes for processes is performed by INVOKE-.PROCESS and SPA WN-PROCESS of CAIS....PROCESS-..CONTROL.
(see Section 6.2); the creation of structural nodes is performed by CREATE-...NODE (see Section 4.1); the creation of
device nodes is performed by the CREATE procedures of CAIS-..TERMINAL..SUPPORT (see Section 7.1.1). -

To simplify manipulation by Ada programs, an Ada type NODE-...TYPE is defined to represent an internal handle for
a node. Most procedures either expect a NODE-..TYPE parameter, or a pathname, or a combination of a BASE node
(specified by a NODE-TYPE parameter) and a pathname relative to it.

3.4 PACKAGE CAIS-NODE...DEFS

This package defines the Ada type NODE-..TYPE, which provides an internal (private) reference to CAIS nodes. This
is referred to as a node handle. It also defines certain enumeration and record types and exceptions useful for node
manipulations.

3.4.1 Package Specification

with 1O...EXCEPTIONS;
package CAIS-NODE..DEFS Is

type NODE-T..YPE is limited private;
type NODE-.KIND Is (FILE, STRUCTURAL, PROCESS, DEVICE);

subtype NAME-STRING Is STRING;

subtype NAME-S.TRING is STRING;
subtype FORM-STRING is STRING; 4p.
subtype RELATIONSHIP-..KEY Is STRING;
subtype RELATION-..NAME Is STRING;

TOP....LEVEL constant STRING "'*CURRENTUSER";
CURRENT-.NODE constant STRING
CURRENT-..PROCESS constant STRING
LATEST-KEY constant STRING =4.

Exceptions

STATUS-ERROR exception renames 1O.EXCEPTIONS.STATUS-ERROR;
MODE-..ERROR exception renames IO-EXCEPTIONSMODL..ERROR;

* NAME-ERROR exception renames IO....EXCEPTIONS.NAME-..ERROR;
* USE-.ERROR exception renames 10-EXCEPTIONS.USE-.ERROR;

LAYOUT-.ERROR exception renames 10-EXCEPTIONS.LAYOUT-.ERROR;

* private
- implementation-dependent

end CAIS..NODE-.DEFS;

3B-1 3



Draft CAIS 3-5

3.4.2 Package Semantics

TOP-.LEVEL : constant STRING : = "'CURRENT-USER";
CURRENT-NODE constant STRING :
CURRENT-PROCESS: constant STRING :
LATEST-KEY : constant STRING = "#";

Define the standard pathnamqs for current user's top-level node, current node, current process, and latest key.

STATUS-ERROR exception renames IO.EXCEPTIONS.STATUS-ERROR;
MODE-ERROR : exception renames IO.EXCEPTIONS.MODE.ERROR;
NAME-ERROR exception renames IO.EXCEPTIONS.NAME..ERROR;
USE-ERROR exception renames iO.EXCEPTIONS.USE.ERROR;
LAYOUT-ERROR : exception renames lO.EXCEPTIONS.LAYOUT.ERROR;

Renames the corresponding exceptions for the LRM.

3.5 PACKAGE CAIS-NODE-MANAGEMENT

This package defines the general primitives for manipulating, copying, renaming, and deleting nodes and their relationships.

3.5.1 Package Specification

with CAIS..NODE..DEFS; - ,--.
package CAIS-NODE-MANAGEMENT is

subtype NODE-T..YPE is CAIS-..NODE-DEFS.NODE-..YPE:
subtype NAME-STRING is CAIS-NODE-DEFS.NAMESTRING;
subtype RELATIONSHIP-KEY s CAIS-NODE-DEFS.RELATIONSHIP.KEY
subtype RELATION-NAME is CAIS-NODE-DEFS.RELATION-NAME;

procedure OPEN (NODE: in out NODE-TYPE;
NAME: in NAME-STRING);

procedure OPEN (NODE: in out NODE-TYPE;
BASE: in NODE-TYPE;
KEY: in RELATIONSHIP-KEY =
RELATION: in RELATION-NAME : = "DOT");

procedure CLOSE(NODE: in out NODE.TYPE);

function IS-OPEN (NODE: in NODE-TYPE) return BOOLEAN;

function KIND (NODE: in NODE-TYPE)
return CAIS-NODE-DEFS.NODE-KIND;

function PRIMARY-NAME(NODE: In NODETYPE) return NAME-..STRING;

function PRIMARY-KEY (NODE: In NODE-TYPE)
return RELATIONSHIP-KEY;

function PRIMARY-RELATION (NODE: in NODE-TYPE)
return RELATIONNAME;

3B- 14

-: . . . .. . . . . . . . . . . . . . . . . . . . . . . .



3-6 Draft CAIS

function PATH.KEY(NODE: in NODE-TYPE) return RELATIONSHIPKEY;
function PATH.RELATION(NODE: In NODLTYPE) return RELATION-NAME;

procedure GET.PARENT(NODE: In NODE-TYPE; 6
PARENT: In out NODE.TYPE);

procedure COPY-NODE (FROM: In NODLTYPE;
TO: in NAME.STRING);

procedure COPY-NODE (FROM: In NODE-TYPE;
TO-BASE: in NODLTYPE;
TO-KEY: In RELATIONSHIP-KEY :=
TO-RELATION: In RELATIONNAME : = "DOT");

procedure COPY-TREE (FROM: In NODE-TYPE;
TO: In NAME-STRING);

procedure COPY-TREE (FROM: In NODLTYPE;
TO-BASE: In NODE-TYPE; S
TO-KEY: In RELATIONSHIP-KEY :=
TO-RELATION: In RELATIONNAME : = "DOT");

procedure RENAME(NODE: In NODE-TYPE;
NEW-NAME: in NAME.STRING);

procedure RENAME(NODE: In NODE-TYPE;
NEW-BASE: in NODE-TYPE;
NEW-KEY: In RELATIONSHIP-KEY : = .... ;
NEW-.RELATION: in RELATION-NAME : = "DOT");

procedure LINK(TO: In NAME-STRING;
NEW-PATH: in NAME.STRING);

procedure LINK(TO.NODE: in NODE-TYPE; .
NEW-BASE: in NODE-TYPE;
KEY: In RELATIONSHIP-KEY : = .... ;
RELATION: in RELATION-NAME : = "DOT");

procedure UNLINK(NAME: in NAME.STRING);
procedure UNLINK(BASE: in NODE-TYPE;

KEY: in RELATIONSHIP-KEY : =
RELATION: in RELATION-NAME : = "DOT");

procedure DELETE.NODE(NAME: in NAME-STRING);
procedure DELETE.NODE(NODE: In out NODETYPE);"

procedure DELETE-TREE(NODE: in out NODE-TYPE);

type NODE.ITERATOR is private;
subtype RELATIONSHIP-KEY.PAlTERN is RELATIONSHIP-KEY;
subtype RELATION.NAME-PATTERN is RELATION-NAME;
subtype NODE-.KIND is CAIS-.NODE-.DEFS.NODE-.KIND;

procedure ITERATE(ITERATOR: out NODE-ITERATOR;
NODE: In NODE-TYPE;
KIND: in NODLKIND;
KEY: In RELATIONSHIPKEY-PATTERN : =
RELATION: In RELATION.NAMLEPATTERN : = "DOT";
PRIMARY-.ONLY: In BOOLEAN: = TRUE;

3B-1 5.................................. .... ... .

-° %', " o -,=%" " %t '°•
•

.°. .% %°.. ..'°" . *. -. o-'-'-" -. - .=. . .".-.- °o-,-o-o -. - -.. ... .,.%=.. .... .. °° °-°



Draft CAIS 3-7

function MORE (ITERATOR: In NODELITERATOR)
return BOOLEAN;

procedure GET.NEXT(ITERATOR: in out NODE.ITERATOR;
NEXT-NODE: In out NODL.TYPE);

procedure SET-CURRENT-NODE(NAME: In NAME-STRING);
procedure SET-CURRENT-NODE(NODE: in NODE-TYPE);

procedure GET-CURRENT-NODE(NODE: out NODE.TYPE);

function IS-SAME(NAME1: In NAME-STRING;
NAME2: In NAMLSTRING)

return BOOLEAN;

function IS-SAME(NODE1: in NODE-TYPE;
NODE2: In NODE-TYPE)

return BOOLEAN;

- Exceptions

NAME-ERROR :exception renames CAIS-NODEDEFS.NAME-ERROR:
USE-ERROR :exception renames CAIS-NODE-DEFS.USEERROR;

private
- implementation-dependent

end CAJS-NODE-MANAGEMENT

3.5.2 Package Semantics

subtype NODE-TYPE Is CAIS-NODEDEFS.NODETYPE;
subtype NAME-STRING Is CAIS.NODE-DEFS. NAME.STRING;
subtype RELATIONSHIP-KEY Is CAIS-NODE DEFS.RELATIONSHIP-KEY;
subtype RELATION-NAME Is CAIS-NODE-DEFS.RELATION-NAME;

The key of a node is the relationship key of the last element of its pathname. Many operations are allowed to take either -

a pathname or a base-node/key/relation-name.

procedure OPEN (NODE: in out NODE-TYPE;
NAME: In NAME-STRING);

procedure OPEN (NODE: In out NODE-TYPE;
BASE: in NODE-TYPE;
KEY: in RELATIONSHIP-KEY: = .
RELATION: in RELATION-NAME : = "DOT"):

Returns an open node handle on the designated node. The NAME-ERROR exception will be raised if the node does
not exist.

An open node handle acts as if the handle forms a temporary secondary relationship to the node; this means that, if
the opened node pointed to is renamed (potentially by another process), the operations on the opened node track the
renaming. Tools which require that node relationships remain unchanged between node-level CAIS operations use have
the features of the CAIS.NODE-CONTROL package (Section 3.7) to synchronize node usage.

3B-16

* ---- '.. S .- *-.-- . . .7 * . - - . . - . . , ~ . . . - -- . - . ..,



3-8 Draft CAIS

procedure CLOSE(NODE: In out NODE.TYPE);

Severs any association between the node handle and the node and releases any associated lock. This must be done "

before another OPEN can be done using the same NODE-TYPE variable by the same process.

function IS-OPEN (NODE: In NODE-.TYPE) return BOOLEAN;

Returns TRUE or FALSE according to open status of the node handle,

function KIND (NODE: in NODE-TYPE) S
return CAIS.NODE.DEFS.NODE_KIND;

Returns the kind of a node, either FILE, PROCESS, STRUCTURAL, or DEVICE.

function PRIMARY-NAME(NODE: In NODE-TYPE) return NAME-STRING;

Returns the full primary pathname to the node.

function PRIMARY-KEY (NODE: in NODE-TYPE)

return RELATIONSHIP-KEY;
function PRIMARY-RELATION (NODE: in NODE-TYPE)

return RELATION-NAME;

Returns the corresponding part of the last element of the primary path to the node. If the node is a top-level node, the
key is the user name, and the relation name is USER.

function PATH.KEY(NODE: In NODE-TYPE) return RELATIONSHIP-KEY;
function PATH.RELATION(NODE: In NODE-TYPE) return RELATION-NAME;

Returns the corresponding part of the last element of the path used to access this node. If the path was an absolute -

path and this is a top-level node, the relationship key is the user name, and the relation name is USER.

procedure GET-PARENT(NODE: In NODE.TYPE;
PARENT: In out NODE.TYPE);

Returns the parent node. Generate an exception if NODE is a top-level node.

procedure COPY-NODE (FROM: In NODE.TYPE;
TO: in NAME-STRING);

procedure COPY-NODE (FROM: in NODE-TYPE;
TO_.BASE: in NODE-TYPE;

TO-KEY: in RELATIONSHIP-KEY :=
TO-RELATION: In RELATION-NAME : = "DOT");

Copies a node. Any secondary relationships emanating from the original node are recreated in the copy. Unless the
target of the original node's relationship is the node itself, then the copied relationship still refers to the same target
node. If the target is the node itself, then the copy will have an analogous relationship to itself. It is an error (USE-ERROR)
if the node is a process or device node, or if any primary relationships emanate from the original node.

procedure COPY-TREE (FROM: In NODE-TYPE;
TO: In NAME-STRING);

procedure COPY-TREE (FROM: in NODE-TYPE;
TO-BASE: In NODE-TYPE;
TO-.KEY: In RELATIONSHIPKEY : =
TO-RELATION: in RELATION-NAME : = "DOT");

38-17.. .. *. . .. .
. . . . . . . . . . . . . . . . .. '-.°.."



7
Draft CAIS 3-9

Copies a tree of nodes (formed by primary relationships), as well as their secondary relationships. Secondary relation-
ships between two nodes which are both copied are recreated between the two copies. Secondary relationships emanating
from a node which is copied, but which refer to nodes outside the tree being copied, are copied so that they emanate - ,
from the copy, but still refer to the old (uncopied) node. The exception USLERROR will be raised if any node in the
tree is a process or device.

procedure RENAME(NODE: In NODE-TYPE;
NEW-NAME: In NAMELSTRING);

procedure RENAME(NODE: In NODE-TYPE;
NEW-BASE: in NODE-TYPE;
NEWKEY: in RELATIONSHIPKEY :.;
NEW-RELATION: In RELATION-NAME = "DOT");

Changes the primary connection to a node and adjusts the PARENT relationship appropriately.

Existing secondary relationships with the renamed node as target will track the renaming. An implementation may raise
USE-ERROR if the renaming cannot be accomplished while still maintaining consistent secondary relationships and
acircutarity of primary relationships. RENAME raises the exception USE.ERROR it a node already exists with the new
name.

Existing processes with open node handles track the renamed node; the node's handle acts as if the accessing process
had a temporary secondary relationship to the node.

procedure LINK (TO: in NAME-STRING;
NEW-PATH: in NAME-STRING);

procedure LINK (TO-NODE: in NODE-TYPE;
NEW-BASE: In NODE-TYPE;
KEY: In RELATIONSHIP-KEY =
RELATION: In RELATION-NAME = "DOT");

Creates a relationship from one existing node to another. This relationship will be identified as a secondary relationship.

The first LINK procedure takes the name of the target node as the TO argument and a NEW-PATH which should lead
to it. The base/key/relation are implied by the NEWPATH. The second LINK procedure takes a handle on the target
node, a handle on the NEWBASE, and an explicit key and relation to be established from NEW-BASE to TO-NODE.

procedure UNLINK (NAME: in NAME-STRING);
procedure UNLINK (BASE: In NODE-TYPE;

KEY: in RELATIONSHIP-KEY :=
RELATION: In RELATION-NAME := "DOT");

Deletes a secondary relationship. Raises USE-ERROR if the specified relationship is a primary relationship or does
not exist.

procedure DELETE-NODE(NAME: in NAMESTRING);
procedure DELETE-NODE(NODE: in out NODE-TYPE); - --

Deletes the primary relationship to a node and the node itself. It is an error if any primary relationships emanate from
this node.

This delete operation closes NODE, removes the appropriate relationship from the node's parent and updates the node's
parent. If a process node is not TERMINATED (see Section 6.1), this action aborts its process. This delete operation can-
not be used to delete more than one node in a single operation.

procedure DELETE.TREE(NODE: In out NODL.TYPE);

3B-18
. -.-. "

A-" o. ,,

I'' -,°° 'oo° °°. ' '.°..°o° .• - ." , o • • . - - . . • -° - - - - - - - - - .. t.,..



3-10 Draft CAIS 0

DELETE_.TREE deletes a node and recursively deletes all nodes with the designated node as their parent. This opera-
tion closes the NODE handle and removes the appropriate relationship from the node's parent. This operation can be
used to delete more than one node in a single operation. If DELETE-.TREE raises the USE-..ERROR exception, no
node may be deleted.

* type NODE.JTERATOR Is private;
* ~~subtype RELATIONSHIP...KEY...PATTERN Is RELATIONSHIP-..KEY;

subtype RELATION-NAML..PATTERN Is REL.ATON-NAME;
subtype NODE-.KIND Is CAIS-..NODE...DEFS.NODE.KIND;

RELATIONSHIP..KEY....PATTERN and RELATION...NAMEPATTERN follow the syntax of relationship keys/rellation
names, except that a -?" will match any single character and a -" will match any string of characters.

procedure ITERATE(ITERATOR: out NODE-..TERATOR;
NODE: in NODE-TJYPE;
KIND: in NODE-KIND;
KEY: In RELATIONSHIP-KEY-PATTERN :=.
RELATION: In RELATION...NAME-PATTERN " DOT";
PRIMARY-...ONLY: In BOOLEAN := TRUE);

function MORE (ITERATOR: In NODE-ITERATOR)
return BOOLEAN;

procedure GET...NEXT(ITERATOR: in out NODE.JTERATOR;
NEXT-.NODE: In out NODL..TYPE);

These three operations iterate through those nodes referred to from the given NODE, via primary or secondary relation-
ships that have keys/relations satisfying the specified patterns.

The nodes are returned in ASCII lexicographical order by RELATION and then by relationship KEY. The key and relation
are available by the tunctions PATH-..KEY and PATH.-RELATION (see above). Nodes that are of a different kind than
the KIND specified are omitted.

* ~If PRIMARY-...ONLY is true, then only primary relationships are considered when creating the iterator. In this case, either
PATH...KEYIPATH-..RELATION or PRIMARY...KEY/PRIMARY-RELATION may be used to determine the relationship
which caused the node to be included in the iteration.

Similarly, these operations iterate through the primary or secondary relationships from the given NODE which have
keys/relations satisfying the specified patterns.

procedure SET-..CURRENT-..NODE(NAME: In NAME-STRING);
procedure SET-..CURRENT...NODE(NODE: In NODE-..TVPE);

Specifies NODE/NAME as the current node.

procedure GET-.CURRENL..NODE(NODE: out NODE..JYPE);

* Opens a handle on the current node. This is equivalent to OPEN(NODE, 'CURRENT...NODE)
-d

function IS-..SAME(NAMEI: In NAME-.STRING;
NAME2: In NAME-STRING)

return BOOLEAN;

function 1S-SAMIE(NODEI: In NODE-..TYPE;
NODE2: In NODE-T.YPE)

return BOOLEAN;

Returns TRUE If both names/node handles refer to the same CAIS node.

3B-19



Draft CAIS 3-11

3.6 PACKAGE CAIS-..ATTRIBUTES

This package supports the definition and manipulation of named attributes for nodes and relationships. Each attribute
is a list of the format defined by the package CAIS....LIST...UTILS (see Section 8.2.2). The name of an attribute follows

* the syntax of an Ada identifier. Upperllower case distinctions are significant within the value of attributes, but not within
the attribute name.

It is anticipated that certain attribute names and their values will be included as part of the CAIS definition. In any case,
each implementation must identify those attribute names and values which are reserved or which have special significance.

The operations in this package are overloaded to permit access to nodes and relationships by either the name strings
or the node handles. Access by the node handle assures that the operation tracks the node (which may be renamed
or locked once open).

3.6.1 Package Specification

with CAIS-LIST..UTILS;
with CAIS-..NODE-..DEFS;
package CAIS-ATTRIBUTES is

subtype NAME-STRING is CAIS-NODE-DEFS.NAML..STRING;
subtype NODE-..TYPE is CAIS-..NODE-..DEFS.NODE..JYPE;- -

subtype LIST Is CAIS....LIST....UTILS.LIST;
subtype ATTRIB-NAME Is STRING;
type FLAG-ENUM is (READ-ONLY, INHERIT);

procedure SET-..NODE-ATTRIBUTE(NAME: in out NAME-.STRING;
ATTRIB: in ATTRIB-NAME;
VALUE: In LIST).

procedure SET-..NODE....ATTRIBUTE(NODE: in out NODE-T.YPE;
ATTRIB: In ATTRIB-..NAME;
VALUE: in LIST);

procedure SET-AT...ATTRIBUTE(NAME: in out NAME-..STRING;
ATTRIB: in ATTRIB-NAME;
VALUE: in LIST);

procedure SET..PATH-.ATTRIBUTE(NODE: in NODE-T.YPE:
ATTRIB: in ATTRIB-NAME;
VALUE: In LIST);

procedure GEL..NODE-.ATTRIBUTE(NAME: in NAME-...STRING;
ATTRIB: In ATTRIB-..NAME;
VALUE: in LIST);

procedure GEL...NODE..ATTRIBUTE(NODE: in out NODE-TYPE:
ATTRIB: in ATTRIB...NAME;
VALUE: In LIST);

procedure GET...ATH...ATTRIBUTE(NAME: in NAME-.STRING;
ATTRIB: In ATTRIB-..NAME;
VALUE: In LIST);

procedure GET-PATH-ATTRIBUTE(NODE: in NODE-..TYPE;
ATTRIB: In ATTRIB...NAME;
VALUE: in LIST);

type ATTRIB...TERATOR is private;
subtype ATTRIB-P.ATTERN is STRING;

3B-20

................................. ...-.- 7-=...



3-12 Draft CAIS 0

procedure NODE-ATTRIBUTE.ITERATE (ITERATOR: In out ATTRIB-ITERATOR;
NAME: In NAME-STRING;
PATTERN: In ATTRIB-PATTERN : =. );

procedure NODF_.ATTRIBUTE.ITERATE (ITERATOR: in out ATTRIB.ITERATOR;
NODE: In NODE-TYPE;
PATTERN: In ATTRIB-PATTERN := .

procedure PATHATTRIBUTE-ITERATE (ITERATOR: In out ATTRIB.ITERATOR;
NAME: in NAME-STRING;
PATTERN: in ATTRIB.PATTERN: = .. ;

procedure PATHATTRIBUTEITERATE(ITERATOR: In out ATTRIB.ITERATOR;
NODE: In NODLTYPE;
PATTERN: in ATTRIB.PATTERN : =

function MORE (ITERATOR: In ATTRIB-ITERATOR)
return BOOLEAN;

procedure GET-NEXT(ITERATOR: In out ATTRIB.ITERATOR;
ATTRIB: out ATTRIB-NAME;
VALUE: In out LIST);

procedure SET-FLAG(NAME: In NAME-STRING;
ATTRIB: in ATTRIB-NAME;
WHICH: In FLAG.ENUM; S
TO: in BOOLEAN := TRUE);

procedure SET.FLAG(NODE: In NODE-TYPE;
ATTRIB: In ATTRIB-NAME;
WHICH: In FLAG-ENUM;
TO: in BOOLEAN: = TRUE);

function FLAG (NAME: in NAME-STRING;-
ATTRIB: In ATTRIB-NAME;
WHICH: in FLAG.ENUM)

return BOOLEAN;
function FLAG (NODE: in NODE-TYPE;

ATTRIB: In ATTRIB.NAME;
WHICH: in FLAG-.ENUM)

return BOOLEAN;

- Exceptions

USE-ERROR :exception renames CAIS.NODE.DEFS.USEERROR;

private S
implementation-dependent,

end CAIS.ATTRIBUTES;

3.6.2 Package Semantics

subtype NAME-STRING Is CAIS.NODE.DEFS.NAML.STRING; S
subtype NODE-TYPE Is CAIS.NODEDEFS.NODETYPE;
subtype LIST Is CAISLIST.UTILS.LIST;
subtype ATTRIBNAME Is STRING;

38-21

... -.'_ . " ' . '_,. _-_. ._' -.'. . ' ' - ,=._'_.Z.l--t'..,'...''C. . 'C£ :'- C',:''':_:." ,. --2 .'Z'-'. ""5 '



Draft CAIS 3-13

Each CAIS node or relationship may have list-valued attributes. They are associated with nodes referred to by. a pathname
or node handle and with relationships referred to by the last step in a pathname or by the last step associated by a pathname.

type FLAG-ENUM Is (READ-ONLY, INHERIT);

The type FLAGENUM selects one of two flags associated with each attribute. Attributes with the READ-ONLY flag --
may not be written. Attributes with no READ-ONLY flag may be read or written. If a node has attributes with the IN-
HERIT flag set, then nodes created with that node as their parent will have the initial values for these attributes copied
from those of the parent node.

procedure SET.NODEATTRIBUTE(NAME: in out NAME-STRING;
ATTRIB: in ATTRIB.NAME;
VALUE: in LIST);

procedure SET-NODEATTRIBUTE(NODE: In out NODLTYPE;
I ATTRIB: in ATTRIB-NAME;

VALUE: In LIST);

procedure SET-PATH..AT'RIBUTE(NAME: in out NAME.STRING;
ATTRIB: In ATTRIB-NAME;
VALUE: In LIST);

procedure SETPATH.ATTRIBUTE(NODE: in NODE.-TYPE; -. .
ATTRIB: In ATTRIBNAME;
VALUE: In LIST);

Sets the given node/relationship attribute. If an attribute with the given name already exists, then the existing value is
over-written by the given value; if it does not exist, a new attribute is created and set to the given value. Setting the
value of the attribute to an empty list deletes the attribute. This operation will fail with USE-ERROR it the attribute
is READ-ONLY or if the current process does not have update access to the node.

procedure GET-NODE.ATTRIBUTE(NAME: In NAME.STRING;
ATTRIB: In ATTRIB-NAME;
VALUE: In LIST);

procedure GET.NODEATTRIBUTE(NODE: in out NODE-TYPE;
ATTRIB: In ATTRIB.NAME;
VALUE: In LIST);

procedure G ET-PATH.ATIRIBUTE(NAME: In NAME-STRING;
ATTRIB: In ATTRIB.NAME;
VALUE: In LIST);

procedure GET-PATH.ATTRIBUTE(NODE: in NODE-TYPE;
ATTRIB: In Ar'RIB-NAME;
VALUE: in LIST);

Gets the current value of an attribute, If the attribute has never been set, then these operations return the empty list.

type ATTRIB.ITERATOR is private;
subtype ATTRIB.PATTERN Is STRING;

An attribute iterator is used to sequence through the names of the attributes of a node or a relationship. An
ATTRIB.PATTERN has the same syntax as an ATTRIBNAME, except that "?" stands for any character and
stands for zero or more arbitrary characters.

By using simply the pattern .. it is possible to iterate through the names of all of the non-null attributes of a node.

3B-22

• ° . . .

, :, ,, ~~~~~~- ,- -- - - - - - - - - - - - - - - - --'.',.'.'.' '.• _._. , - ..- _ ." - ., . ._, . ,.'# .- ':' ,",'" ''.. :. -'_L'"



3-14 Draft CAIS

procedure NODE...ATTRIBUTE-..TERATE (ITERATOR: In out ATTRIB..JTERATOR;
NAME: In NAME-.STRING;
PATTERN: In ATTRIB...ATTERN :=.

procedure NODE-ATTRIBUTE..JTERATE (ITERATOR: in out ATTRIB.JTERATOR; 0
NODE: In NODE-TYPE;
PATTERN: In ATTRIB-PATTERN: =

procedure PATH-..ATTRIBUTELJTERATE (ITERATOR: In out ATTRIB-jTERATOR;
NAME: In NAME-..STRING;
PATTERN: In ATTRIS...ATTERN: = )

procedure PATH-ATTRIBUTE-JTERATE (ITERATOR: In out ATTRIB..JTERATOR;
NODE: In NODE-TYPE;
PATTERN: In ATTRIB-PATTERN:= )

function MORE (ITERATOR: in ATTRIB..JTERATOR)
return BOOLEAN;

procedure GET-NEXT(ITERATOR: in out ATTRIB-JTERATOR;
ATTRIB: out ATTRIB....NAME
VALUE: in out LIST);

These operations iterate through the names of the attributes of a node or relationship which match the given pattern.
The names are returned in ASCII lexicographical order.

procedure SET-FLAG(NAME: In NAME-.STRING;
ATTRIB: In ATTRIB....NAME;
WHICH: in FLAG-ENUM;
TO: i BOOLEAN := TRUE);

procedure SET-LAG(NODE: in NODE-TJYPE;
ATTRIB: In ATTRIB-NAME;
WHICH: In FLAG-ENUM;
TO: in BOOLEAN :=TRUE);

function FLAG (NAME: in NAME-.STRING;
ATTRIB: in ATTRIB-..NAME;
WHICH: In FLAG-ENUM)

return BOOLEAN;

function FLAG (NODE: In NODE-..TYPE;
ATTAIB: In ATTRIB-..NAME;
WHICH: In FLAG...ENUM)

return BOOLEAN;

These two operations provide access to the READ-.ONLY and INHERIT flags for each attribute. SET-FLAG sets the
specified I lage. The function FLAG returns the current setting of the flag.

3.7 PACKAGE CAIS-..NODE-CONTROL

This version of the CAlS defines only primitives for dynamic access synchronization. Each operation on a node is inde-
pendent. and both access control and synchronization status are re-checked for each operation. This package defines
access synchronization operations at the node levels. For file (and device) nodes, an implementation may define the FORM
string to permit an OPEN operation (LRM chapter 14; see also Sections 5 and 7 of this document) which specifies ex-
clusive access; in that case the sequence of file (and device) opening, reading and writing, and closing, is considered

a single node-leve "operation". Use of file (or device) level access synchronization thus provides for longer transactions
at the node level without locking the node's attributes and relationships (only content may be locked by file leool OPEN
actions). Use of node level access synchronization is intended for control at the level of the node as a whole (content,
relationships, and aftributes).

3B-23



Draft CAIS 3-15

3.7.1 Package Specification

with CAIS...ATTRIBUTES;-
with CAIS-..NODL..DEFS;
with CAIS-NODE..CONTROL Is

subtype NODE-.TYPE Is CAIS-..NODE-..DEFS.NODE-..TYPE;
subtype ATTRIB-..NAME Is CAIS-..ATTRIBUTES.ATrRIB..NAME;
ACCESS-..CONTROL :constant ATTRIB....NAME :="ACCESS-C...ONTROL";

SECURITY-..LEVEL constant ATTRIB....NAME :="SECURITY-..LEVEL";

procedure LOCK (NODE: In NODE-TIYPE;
TIME-..LIMIT: In DURATION: DURATIOtf LAST);

procedure UNLOCK (NODE: In NODE-TJYPE).

private
-implementation-dependent

end CAIS-NODE-CONTROL,

3.7.2 Package Semantics

subtype NODE-..TYPE is C1S-NODEDEFS.NODETYPE;
subtype ATTRIB-..NAME is CAIS....ATTRIBUTES.ATTRIB_NAME;
ACCESS-..CONTROL :constant ATTRIB-..NAME " ACCESS-..CONTROL";
SECURITY-LEVEL :constant ATTRIB_NAME " =SECURITY-LEVEL";

The CAIS provides two predefined attribute names for acces control: ACCESS-..CONTROL for discretionary ac--
cess control and SECURITY-...LEVEL for non-discretionary access control. These attributes may be set at node-
creation (by inclusion in the FORM string - see Section 4.1) or later with SET-NODE..ATTRIBUTE (see Sec-
tion 3.6).

procedure LOCK (NODE: In NODE-..TYPE;
TIME-..LIMIT: in DURATION: DURATIONWLAST);

procedure UNLOCK (NODE: In NODE...TYPE);

Locks/unlocks the designated node for a series of updates. When a node is locked, any other process that attempts
to modify any attribute, relationship, or content of the node will receive an exception. If the node is already locked, then
LOCK will be delayed until the node is unlocked or until the time limit expires. In the later case an exception will be raised.

*3.8 PRAGMATICS

Several private types are defined as part of the CAIS Node Model. The actual implementation of these types may vary
* from one CAIS implementation to the next. Nevertheless, it is important to establish certain minimums for each type
* to enhance portability.

a. NAME-STRING At least 255 characters In a CAtS pathname.

b. RELATIONSHIP-KEY
KEY-STRING At least 20 characters must be significant in (relationship) key.

3B-24



3-16 Draft CAIS .0

C. ATTRIB-..NAME
RELATION-...NAME At least 20 characters must be significant in attribute/role- -. .

tion names.

d. Tree-height At least 10 levels of heirarchy must be supported for the
primary relationships.

0. Record size number At least 32767 bits per record must be supported.

f . Open node count Each process must be able to have at least 15 nodes open

simultaneously.

07

3B-25

U -7



4. CAiS STRUCTURAL NODES

Structural nodes are special nodes in the sense that they do not contain contents as do the other nodes ot the CAIS
model. Their purpose is solely to be carriers of common information about other nodes related to the structural node.
Structural nodes are typically used to create conventional directories, configuration objects, etc. -

The package CAIS...STRUCTURAL..NODES defines the primitive operations for creating structural nodes. All other
operations for structural nodes are defined in Section 3.

rw 4.1 PACKAGE CAIS-STRUCTURAL-NODES

4.1.1 Package Specification

with CAIS-NODE-DEFS;
package CAIS..STRUCTURAL-NODES is

subtype NODE-TYPE Is CAIS-NODE-DEFS.NODE-TYPE;
subtype NAME-STRING Is CAI&..NODE-.DEFS.NAME...STRING;
subtype FORM-...STRING is CAIS...NODE-..DEFS.FORMS-.STRING;
subtype RELATIONSHIP-..KEY Is CAS-NODE-DEFS.REATONSHR..KEY;
subtype RELATION-..NAME Is CAIS..NODE-.DEFS.RELATION-.NAME;

procedure CREATE-..NODE(NAME: In NAME-STRING; -

FORM: In FORM-..STRING: "1
procedure CREATE-NODE(BASE: In NODE-..TYPE;

KEY: In RELATIONSHIP-KEY
RELATION: in RELATION-NAME :="DOT".
FORM: in FORM-..STRING:

procedure CREATE-NODE(NODE: In out NODE-..TYPE;
NAME: in NAME-..STRING;
FORM: in FORM-..STRING:

procedure CREATE...NODE(NODE: in out NODE-TYPE;
BASE: in NODE-..TYPE;
KEY: in RELATIONSHIP-.KEY =

RELATION: In RELATION-NAME := "DOT";
FORM: In FORM-...STRING:

private
implemenitation-dependent

end CAIS-STRUCTURAL..NODES;

4.1.2 Package Semantics

subtype NODE-..TYPE is CAISNODE-DEFS.NODE-.TYPE;

subtype NAME-STRING Is CAI&...NODE-..DEFS.NAME-..STRING;
subtype FORM-..STRING Is CAIS-NODE-..DEFS.FORM-STRING;
subtype RELATIONSHIP-..KEY Is CAI&..NODE-.DEFS.RELATIONSHIP..KEY;
subtype RELATION-..NAME Is CAIS-NODE-DEFS.RELATION-NAME;

3B-26



0
4-2 Draft CAtS

procedure CREATE-..NODE(NAME: In NAME-STRING;
FORM: In FORM-..STRING:

procedure CREATL..NODE(BASE: in NODE-TYPE; 0
KEY: In RELATIONSHIP_..KEY =
RELATION: In RELATION-NAME := "DOT";
FORM: In FORM-..STRING =

procedure CREATE-NODE(NODE: In out NODE-TYPE;
NAME: In NAME-STRING;
FORM: In FORM-STRING:

procedure CREATE....NODE(NODE: In out NODE-TlYPE;
BASE: In NODE-TJYPE;
KEY: In RELATIONSHIP-.KEY:=
RELATION: in RELATION-..NAME :="DOT";
FORM: In FORM-STRING:

Creates a structural node with its primary relationship and parent node implied by the NAME in the first and third pro-

cedures and given explicitly in the second and fourth procedures.

The last two procedures return a node handle allowing immediate access to attributes and relationships.

*If non-null, the FORM parameter provides initial values for attributes ot the node, using Ada aggregate syntax, with each
attribute name followed by a right-arrow (=> )and the attribute value (see Section 1.2.2 CAIS....LIST...UTILS for the
syntax of attribute value).

3B-27



5. CAIS FILE NODES

CAIS file nodes are nodes that represent information about and contain external files. The underlying model for the
content of such a node is that of a file of data items, accessible randomly by some index or indices or sequentially.
The basic operations on such files are provided by the Ada packages for Input/Output specified in Chapter 14 of the -
Ada LRM. While the semantics of the packages as specified in the LRM are fully adhered to, the CAIS imposes addi-
tional requirements on those semantics that the LRM designates as being implementation-defined. These requirements
ensure consistent cooperation between the file-related, node-related, and device-related operations.

The CAIS defines additional Input/Output packages CAIS-SEUENTIAL..IO, CAIS-DIRECT-IO. CAIS-TEXT-IO,
and CAIS-INTERACTIVE-IO. The first three packages are identical to the Input/Output packages specified in the Ada
LRM, except that additional subprograms are added supporting more convenient and efficient file management opera-
tions by exploiting the CAIS Node Model. The package CAIS-INTERACTIVE-O defines additional Input/Output facilities
appropriate fcr files which are assigned to terminals.

To insure the consistency of file- and node-related operations the CAIS imposes the following two constraints on all I/O
packages: -

A file must first be made accessible to an Ada program by an OPEN or CREATE, specifying the
external file by a NAME and a FORM, both character strings. The formats of these strings are
not specified in the Ada LRM. The CAIS requires the formats and semantics for NAME and FORM
to adhere to the specifications given in Sections 3 and 4, respectively. Thus file names have the
syntax of node pathnames.

The CREATE operations both establish a new external file (as described in Chapter 14 of the
Ada LRM) and have the side effect of creating the node for the file. The file node's primary rela-
tionship and parent node are implied by the NAME parameter. The DELETE operations have .. .

the side effect of deleting the node itself. DELETE operations are not legal if a file's node has
primary relationships emanting from it. I/O DELETE operations require that the file be open;
CAIS-NODE-MANAGEMENT DELETE operations require only that the node be open (but they
also delete the contents with the deletion of the node itself).

While an implementation may provide a mechanism for file creation and opening to specify access synchronization,
via the FORM parameter, that access synchronization refers to the file contents level only. To utilize node level access
synchronization, the user must open the node explicitly and specify node synchronization operations (see Section 3.7).
Files may be opened with or without node handles being opened, and nodes may be open before or while associated
file handles are open.

5.1 Ada LRM INPUT/OUTPUT

5.1.1 Package IO-EXCEPTIONS ,- .

This package is specified by Chapter 14 of the Ada LRM. The LRM-defined package provides the definition for all excep-
tions generated by the input/output packages.

5.1.2 Package SEOUENTIAL-1O

This package provides sequential access to files/devices. This package is specified by Chapter 14 of the Ada LRM; however,
because of additional pragmatic requirements it may require a specialized implementation in order to be utilized in a
CAIS implementation.

3B-28

o-"*"" e o "
°
"""."""".. ," * " *,=° ' '*- "•"

•
" o "'" "%" """ """° " . " - , " . - *° • , % • . " ' • .

°
*° ,-% •*°% . ' •*. . . .. * j~l '".o ° .° "°* . " ' ° ' °. " . ° ' ' 

°

' *"," ."° ' ' - ° °°°-° -
°

- " 
°

" " , "



5-2 Draft CAIS 0

5.1.3 Package DIRECT1O

This package provides for direct-access input/output to files/devices. This package is specified by Chapter 14 of the ;. -,

Ada LRM; however, because of pragmatic and additional implied semantic requirements, it may require a specialized Simplementation in order to be utilized in a CAIS implementation.

5.1.4 Package TEXT-O.-

n- This package provides sequential formatted input/output to ASCII text files. This package is specified in Chapter 14 -

of the Ada LRM, however, because of pragmatics and additional implied semantics, it may require a specialized im-
plementation in order to be utilized in a CAIS implementation.

5.2 CAtS INPUTIOUTPUT

5.2.1 CAIS File Management

* Section 14.2.1 of the Ada LRM defines the file management operations CREATE and OPEN that are included in each
of the Ada LRM Input/Output packages. These operations use a pathname as identification of the external file.
In the CAIS model, this pathname implies a navigation along relationships to reach the node whose content represents
the desired external file.

In the CAIS. the navigation operations of CAISNODE.MANAGEMENT allow the identification of the node associated =0
with a file by means of a pathname and also by means of an opened node handle, or a base node and a relationship
identification (i.e., relation name and relationship key) leading to the desired node.

The procedures and functions described in this section provide for the control of external files; their declarations are
repeated in each of the three packages for CAIS sequential, direct, and text input/output. In order to provide for a smooth

3 transition from a file node to the file itself, and to prevent unnecessary repetitions of navigations, the file management
operations CREATE and OPEN included in the packages CAISSEOUENTIAL.O, CAISDIRECTJIO, and
CAIS-TEXT-1O are provided in overloaded versions:

subtype NODETYPE Is CAISNODEDEFS.NODE-TYPE;
procedure CREATE (FILE: in out FILE-TYPE;

MODE: In FILE-MODE;
* BASE: in NODE-TYPE;

KEY: In RELATIONSHIP-KEY: =
RELATION: In RELATION-NAME: = "DOT";
FORM: in FORM-STRING: = .;

procedure OPEN (FILE: in out FILLTYPE;
MODE: In FILE-MODE;

aBASE: in NODE-TYPE:
KEY: In RELATIONSHIP-KEY:
RELATION: in RELATION-NAME: ="DOT";
FORM: In FORM-STRING: =.

procedure OPEN (FILE: In out FILE-TYPE;
MODE: in FILE.-MODE;
NODE: In NODE-TYPE;
FORM: in FORM-STRING: .); -0

.. The semantics of the operations are the same as specified In the Ada LRM Section 14.2.1 and CAIS Section
5.0, except that the external file is identified by means of the associated node handle or BASE, KEY, RELATION.

In addition, the following operation Is provided to obtain an opened node handle for the node associ' ,i lth a file:

3B-29L _

....-• -, ..-,,-.. ,•.-. . . . . .+ .. . - . ---• . - .- ... . -. .- - . . , .. .• . - . .- - , . ... .- + - . -, - -, .



Draft CAIS 5-3

procedure OPEN.NODE(NODE: In out NODL.TYPE;
FILE: In FILE,_TYPE);

The exception STATUS-ERROR is raised if either the actual parameter for FILE is a closed file handle or the actual
parameter for NODE is an already open node handle.

5.2.2 Package CAIS.SEQUENTIAL 10

This package provides sequential access to files/devices. This package is specified by Chapter 14 of the Ada RML; howeve,
because of additional pragmatic requirements it may require a specialized implementation in order to be utilized in a
CAIS implementation. Furthermore, the declarations given in Section 5.2.1 are added to the package.

5.2.3 Package CAIS-DIRECT-IO

This package provides for direct-access input/output to files/devices. This package is specified by Chapter 14 of the Ada
LRM; however, because of pragmatic and additional implied semantic requirements, it may require a specialized implemen-
tation in order to be utilized in a CAIS implementation. Furthermore, the declarations in Section 5.2.1 are added to the
package.

A conforming implementation should support access with package CAIS-SEOUENTIAL-O to an external file created
and/or maintained with CAIS.DIRECTIO. (This requires that the generic instantiations of both packages utilize the ""
identical ELEMENT-TYPE.)

5.2.4 Package CAIS-TEXT-"0

This package provides sequential formatted input/output to ASCII text files. This package is specified in Chapter 14 of
the Ada LRM; however, because of pragmatics and additional implied semantics, it may require a specialized implementa-
tion in order to be utilized in a CAIS implementation. Furthermore, the declarations given in Section 5.2.1 are added to
the package.

A conforming implementation that supports CAIS-INTERACTIVE-O provides additional semantics in the ' "-

CAIS-TEXT-1O package for the CAIS-TEXT-IO procedures and functions which are used in reference to printer-
type terminals and Video Display Terminal (VDT) type terminals associated with an object of type CAIS-INTER-
FACE.IO.INTERACTIVE.TERMINAL.

The line terminator, page terminator, and file terminator characters are implementation-dependent.

A VDT functions identically to a hardcopy terminal unless bounds are set for the line length and/or page length. For
a cursor-addressable VDT, the current column number and current line number of the associated input file and output
file indicate the column number and line number, respectively, on the VDT display. The character position in the upper
left corner of the VDT display is the first column of the first line of the first page.

The following procedures have additional semantics when used in reference to a terminal.

procedure SET.LINE-LENGTH(FILE In FILE-TYPE; TO: in COUNT);
procedure SET.LINELENGTH(TO: in COUNT);

The exception USE-ERROR is raised if the value of TO is greater than the number of character positions on a line
of the display.

procedure SET-PAGE-LENGTH(FILE: In FILE-TYPE; TO : In COUNT);
procedure SET-PAGE-LENGTH(TO: In COUNT);

In reference to a VDT the exception USE-ERROR is raised if the value of TO is greater than the number of lines on
* the display.

3B-30

.....................-. .. . .. . . . . . .. . . . . . .. . . . . . .



- - ' -. - -. -- . -. -. .

5-4 Draft CAIS

procedure NEW.LINE(FILE: In FILE.TYPE;
SPACING: In POSITIVE-COUNT := 1);

procedure NEWLINE(SPACING: In POSITIVECOUNT = 1);

In reference to a VDT the active position is moved to the first column of the line below the current line. If the active -

position was on the last line of the page, NEWLINE causes all lines of the display to be moved upward such that
the top line(s) is lost and the last line of the page is blank.

SPACING acts as defined in the LRM.
40

procedure NEW-PAGE(FILE: In FILETYPE);
procedure NEW-PAGE;

In reference to a VDT the screen is cleared and the active position is moved to the first column of the first line of the display.

procedure GET(. .. );

In reference to a cursor-addressable VDT with a bounded line length the GET procedures clear a portion of the display
starting at the active position and equal in length to the maximum possible length of the item to be read. The active
position is not changed. The data to be read is buffered as the user entars it. Implementation defined editing operations
are permitted. No characters other than the printable characters and horizontal tab (HT) may be returned.

procedure SET-ERROR (FILE : In FILE-TYPE);

Provides an open file handle to be used for current error output. The exception MODE-ERROR is raised if the mode
of FILE is IN-.FILE.

function STANDARD-ERROR return FILE-TYPE;-

Returns error output set at start of program execution.

function CURRENT-ERROR return FILE-TYPE;

Returns current error output, set by SET-ERROR.

5.2.5 Package CAIS-INTERACTIVE-IO . .

This package defines input and output facilities appropriate to files which are assigned to terminals.

The package provides for association of input and output text files with an output logging file. It also provides for turning

on and off local echoing of input, association of a prompt string with terminal input, and simplistic random access within
a terminal display.

Finally, this package defines a standard error-output text file which is used for error messages which are generated
during program execution, but which would be missed if they were output to a re-directed standard output.

5.2.5.1 Package Specification
O

with CAIS-TEXTLIO;
with CAIS-NODLEDEFS;
package CAIS-INTERACTIVE-O Is

subtype FILLTYPE Is CAIS-TEXT-IO.FILLETYPE;

type INTERACTIVLTERMINAL Is limited private; •

3B-31
9 .

'.- ..'..'::.:-" "" "" """' " :_.:.- . :... 2. .:;." ' " "•" ' """ -- -. -:-.-." -.' - --:.-& : '' -- ::: * : -:-;.. ', - -:--- ' - --" , .*--- * ".--. .."* .--. --:--'-.,. ':::: ? i



Draft CAIS 5-5

procedure ASSOCIATE (TERMINAL: In out INTERACTIVE-TERMINAL,
INFILE: In FILE-..iTYPE;
OUTFILE: in FILL..TYPE);

procedure SET-..LOG (TERMINAL: In out INTERACTIVE-..TERMINAL;
LOG-FILE: in FILE-..TVPE);

function LOG (TERMINAL : in INTERACTIVE-TERMINAL)
return PILE_..TYPE;

type CURSOR-POSITION Is
record

LINE :POSITIVE;
COLUMN : POSITIVE:

end record;

procedure SET-CURSOR (TERMINAL: In out INTERACTIVE-..TERMINAL;
POSITION: In CURSOR-..POSITION);

function CURSOR (TERMINAL : in out INTERACTIVE-..TERMINAL)
return CURSOR-..POSITION,

function SIZE (TERMINAL :In out INTERACTIVE-TERMINAL)

return CURSOR-POSITION;

procedure UPDATE (TERMINAL : In out INTERACTIVE-T.ERMINAL);

procedure SET-ECHO (TERMINAL: in out INTERACTIVE-.TERMINAL;
TO: In BOOLEAN := TRUE);- -

function ECHO (TERMINAL: In INTERACTIVE-..TERMINAL) return BOOLEAN;

procedure SET-PROMPT (TERMINAL: In INTERACTIVE-TERMINAL;
TO: In STRING);

function PROMPT (TERMINAL : in INTERACTIVE-..TERMINAL) return STRING;

Exceptions

LAYOUT-ERROR exception renames CAIS-..NODE-DEFS.LAYOUT-..ERROR;
MODE-.ERROR exception renames CAIS-NODE-DEFS.MODE-ERROR;
STATUS-ERROR exception renames CAIS-NODE-..DEFS.STATUS-ERROR;
USE-ERROR exception renames CAIS...NODE-DEFS.USE-.ERROR:

* private
.e -- implementplion-dependent

end CAIS..JNTERACTIVE..jO;

5.2.5.2 Package Semantics

procedure ASSOCIATE (TERMINAL: in out INTERACTIVE-TERMINAL;
INFILE: In FILE-..TYPE;
OUTFILE: in FILE-..TYPE);

Associates the INFILE (a file of mode IN-...FILE) and the tile OUTFILE (a file of mode OUT-.FILE) with the TERMINAL.
The exception MODE-..ERROR is raised if the mode of INFILE is OUT-.FILE or the mode of OUTFILE is IN-...FILE.
The exception STATUS-..ERROR is raised if either INFILE or OUTFILE is not open.

3B-32



5-6 Draft CAIS S

procedure SET-LOG (TERMINAL: In out INTERACTIVETERMINAL;
LOG-FILE: in FILE._TYPE);

Sets LOG-FILE as the file on which the output log is written. When logging is active, all output is simultaneously provid- S
ed to both the output file and the log file. Logging associations on the standard input and standard output text files are
required to be preserved across program invocations. The exception MODE.ERROR is raised if the mode of LOG-FILE
is IN-FILE. The exception STATUS-ERROR is raised if CAIS-TEXT-lO.ISOPEN(LOG-FILE) returns FALSE.

function LOG (TERMINAL: In INTERACTIVE-TERMINAL)

return FILE_-TYPE;

Returns the current logging file associated with TERMINAL. The file handle returned is not open if not logging.

type CURSOR-POSITION Is
record

LINE : POSITIVE;
COLUMN : POSITIVE;

end record;

CURSOR-POSITION identifies the line and column numbers of a terminal.

procedure SET-CURSOR (TERMINAL: In out INTERACTIVETERMINAL;
POSITION: In CURSOR-POSITION);

4

Moves the active position on the display to that specified by POSITION. The exception LAYOUTERROR is raised
if the LINE or COLUMN number exceeds PAGE-LENGTH or LINE-LENGTH, respectively. whean bounded. For a hard-
copy terminal the exception USE.ERROR is raised if the LINE or COLUMN number is less than the current line or
column number, respectively.

function CURSOR (TERMINAL: In out INTERACTIVE-TERMINAL)
return CURSOR-POSITION;

Returns the current CURSOR-POSITION.

function SIZE (TERMINAL: In out INTERACTIVLTERMINAL)
return CURSOR-POSITION;

.e
Returns the number of lines and number of columns on the terminal.

procedure UPDATE (TERMINAL: in out INTERACTIVETERMINAL);

Forces all data that has not already been output to the physical terminal to be output immediately.

procedure SET-ECHO (TERMINAL : In out INTERACTIVE-TERMINAL;
TO: in BOOLEAN := TRUE);

Turns on (TRUE) or off (FALSE) echoing for input file.

function ECHO (TERMINAL : In INTERACTIVE-TERMINAL) return BOOLEAN;

Indicates current state of echoing. 0

procedure SET-PROMPT (TERMINAL In INTERACTIVE.-TERMINAL;
TO: In STRING);

Sets prompting string for TERMINAL. All future requests for a line of input from TERMINAL will output prompt string
first. The prompting string and any echoed input are also copied to the log file, if any.

38-33



Draft CAIS 5-7

function PROMPT (TERMINAL: In INTERACTIVE-TERMINAL) return STRING;

Returns current prompt string for input file.

5.3 PRAGMATICS

a. DIRECT-1O Each element of a direct-access file is selected by an integer in-
CAIS-DIRECT-1O dex of type COUNT. A conforming implementation must at least

support a range of indices from one to 32767 (2" .15-1).

b. SEOUENTIAL.-O A conforming implementation must support generic instantiation .1
CAIS-SEQUENTIAL-O of these packages with any (non-limited) constrained Ada type
DIRECT-1O whose maximum size in bits (as defined by the attribute
CAIS-DIRECT-IO ELEMENT-TYPE'SZE) is at least 32767. A conforming implemen-

tation must also support instantiation with unconstrained record
types which have default constraints and a maximum size in bits
of at least 32767, and may (but need not) use variable length
elements to conserve space in the external file.

c. TEXT-IO A conforming implementation must support files with at least 32767
CAIS-TEXT-IO recordsllines in total and at least 32767 lines per page. A conform-

ing implementation must support at least 255 columns per line.

3B-34

7 •%..



0

6. CAIS._PROCESSNODES

Each time an Ada program is invoked, a process node is created to represent the execution of the program. Even where
the Ada program uses tasking, the execution of the program and its tasks is treated as a single CAIS process. This
use of the term process does not preclude the CAIS implementation from devoting more than one host process or one
physical processor to the execution of the single process.

The mechanism by which a user enters the APSE (e.g., logs on) is not defined as part of the CAIS. The facility to verify
access rights to a system via user ID and password, for example, and to establish privileges and resource rights and
quotas may be supported either by the APSE or its underlying implementation.

Each time a user enters the APSE a root process node is created dynamically at the top-level node of the user. This root
process node initiates a tree of dependent processes. The primary relationship for the node of the root process emanates
from the top-level node of the user. It has relation name "JOB" and a relationship key assigned by the APSE or underly-
ing implementation of the APSE. This key is unique for each process node created by the user. In other words, the
format 'USER (XXX)' JOB (YYY) is the absolute pathname of a job.

Tlne root process node exists for the duration of the job's existence in the APSE. When the user's job terminates, the '

root process is terminated and the root process node is deleted.

A process may create other processes by invocation. This act of invocation creates both the node representing the pro-
cess and the process itself. The new process is a child of the invoking process. The primary relationship of the nodes
of these processes emanates from the invoking process with relation name "DOT" and a relationship key that is unique
among nodes bearing the DOT relation with the invoker. The relationship key is an identifier assigned by the invoking
process. By default, the 'CURRENTNODE relationship of the new process is established to be the 'CURRENTNODE
of the invoking process.

A process is identified by providing a pathname to its process node (see CAIS Node Model, Section 3). List-valued at-
tributes and secondary relationships for a process are established using the general node manipulation routines (see
CAIS Node Model, Section 3).

Processes may communicate with each other using the techniques and procedures described in CAIS.PROCESS.
COMMUNICATION (see Section 63). The basic capability provides for sending and receiving messages over channels
between processes, using a queueing model.

Processes may interrupt each other using the techniques and procedures described in CAIS.PROCESS.INTERRUPTS
(see Section 6.5). This basic capability allows for signalling and responding to "pseudo-interrupts," using an asynchronous
model for the delivery of the signal. The response to any pseudo-interrupt is definable by the Ada program before the
delivery of the signal.

6.1 PACKAGE CAIS.PROCESS-DEFS

This package defines types and exceptions associated with process nodes.

6.1.1 Package Specification

with CAIS-NODEDEFS;
package CAIS...PROCESS..DEFS is

type PROCESS-.STATUS Is
(READY, SUSPENDED, ABORTING, TERMINATING); 0

3B- 35
......................



6-2 Draft CAIS

type COMPLETION-STATUS Is (ABORTED, TERMINATED);

ROOT.PROCESS: constant STRING : = 'CURRENT__JOB";
CURRENT-PROCESS: constant STRING :=

-Exceptions

NAME-ERROR: exception renames CAIS.NODLEDERNAML.ERROR;
USE-ERROR: exception renames CAIS.NODE.DEFS.USE.ERROR; -.

private
-- implementation-dependent

end CAIS-PROCESS-DEFS;

W 6.1.2 Package Semantics

type PROCESS-STATUS is
(READY, SUSPENDED. ABORTING. TERMINATING); .

The PROCESS-STATUS is the state a process is in when viewed from another process. Table 6-1 indicates the states
and the events which will cause transition from one state to another. In the READY state a process is actually running . -

or is waiting for resources.

TABLE 6-1
PROCESS STATE TABLE

STATE
READY SUSPENDED ABORTING TERMINATING

OPERATION _ __ __-_ _

TERMINATE TERMINATING TERMINATING - "

ABORT ABORTING ABORTING - ABORTING

SUSPEND SUSPENDED N/A N/A

RESUME READY NIA NIA

NA marks events that are not applicable to the state specified.
-- marks events that have no effect on the state.

Transition to a state as the result of an event is instantaneous with the occurrence of the event. As the state-transition
diagram indicates, there is no transition from an ABORTING or TERMINATING state into any running state.

type COMPLETION-STATUS Is (ABORTED, TERMINATED);

COMPLETION-STATUS is made available to an invoking process upon completion of a descendant process. These
are representative states of a process, since at the time of their receipt the process may have already ceased to exist,

* depending upon the mechanism provided in the implementation underlying the CAIS for handling completed processes.

ROOT-PROCESS: constant STRING: = 'CURRENT-JOB";
CURRENT-PROCESS: constant STRING: =".";

ROOT-PROCESS and CURRENT-PROCESS are two strings defined to represent respectively the root process of the
current job and the current process.

3B- 36

::~~~~~~~~~.'.-.:-...-..-.-. ..... . . . . . . .........'.-.. .... .. .. ....-. ,.. . .".......-.. ,.•....... . . .. ........-. ,



Draft CAIS 6-3 6

6.2 PACKAGE CAIS__PROCESSCONTROL,

This package provides support for the invocation of a program. A program can be invoked using the synchronous model,
in which the calling task is suspended during the life of the dependent process and is resumed when the dependent 0
process terminates, either normally or abnormally. A program can also be spawned using an asynchronous model, in
which the calling task continues execution after the call which creates a dependent process.

6.2.1 Package Specification

with CAIS-NODE-DEFS; 
-7

with CAIS-PROCESS-DEFS; 0
with CAISEXTo ;
with CAISTEXT-UTILS;
package CAIS.PROCESS-CONTROL Is

subtype PROGRAM-STRING Is STRING;
subtype RESULTS-STRING Is CAIS-TEXT.UTILS.TEXT;
subtype PARAMS.STRING Is CAIS-TEXTUTILS.TEXT;
subtype NAME-STRING Is CAIS-NODLEDEFS.NAM-STRING;
subtype RELATIONSHIP-KEY Is CAIS-NODE-DEFS.RELATIONSHIPKEY;
subtype COMPLETION-STATUS Is CAIS.PROCESS-DEFS.COMPLETION.STATUS-
subtype FILE-TYPE Is CAIS-TEXTIO.FILETYPE;
subtype NODE-TYPE Is CAIS-NODE-DEFS.NOD-TYPE;
subtype PROCESS-STATUS Is CAIS-PROCESS.DEFS.PROCESS-STATUS; .. .

UNIOUE.CHILD.KEY: STRING renames CAIS-NODE.DEFS.LATESTKEY;

procedure INVOKLPROCESS (PROGRAM: In PROGRAM-STRING;
PARAMS: In PARAMS-STRING;
RESULTS: in out RESULTS-STRING;
STATUS: out COMPLETION-STATUS;
KEY: In RELATIONSHIP-KEY: = UNIOUE-CHILD.KEY;
STD..IN: In FILE-TYPE : =

CAIS-TEXT-IO.CURRENT-INPUT;
STD.OUT: In FILETYPE : =

CAIS-TEXT-IO.CURRENT-OUTPUT;
STD-ERR: in FILE-TYPE : =

CAIS-TEXT.IO.CURRENT-ERROR;
CURR-NODE: In NAME-STRING :=

"'CURRENT-NODE");

procedure SPAWN-PROCESS (PROGRAM: in PROGRAM-STRING;
PARAMS: In PARAMS-STRING;
NODE: in out NODE-TYPE; 0
KEY: In RELATIONSHIP-KEY: =

UNIQUE-CHILDKEY;
STD..IN: In FILE-TYPE : =

CAIS-TEXT.IO.CURRENT-INPUT;
STD...OLJT: In FILE-TYPE:

CAIS-TEXT-IO.CURRENT.OUTPUT;
STDERR: In FILETYPE := 0

CAIS.TEXTIO.CURRENT.ERROR;
CURR.NODE: In NAME-STRING:=

'CURRENT-NODE");

3B-37

. ' ." -.LX'



6-4 Draft CAIS

procedure AWAIT-PROCESS (PROCESS: In out NODE-TYPE;
RESULTS: In out RESULTS-STRING;
STATUS: out COMPLETION-.STATUS;
LIMIT: In DURATION := DURATION' LAST);

procedure GET.PARAMS (PARAMS: In out PARAMSSTRING);

procedure RETURN.TERMINATED(RESULTS: in RESULTS-STRING;

procedure RETURN-ABORTED(RESULTS: In RESULTS-STRING);

procedure ABORT-PROCESS (PROCESS: in NAMESTRING);
procedure ABORT-PROCESS (NODE: In NODE.TYPE);

procedure SUSPEND.PROCESS(PROCESS: In NAME-STRING);
procedure SUSPEND-PROCESS(NODE: in NODE-TYPE);

procedure RESUME-PROCESS (PROCESS: in NAME.STRING);
procedure RESUME-PROCESS (NODE: in NODE-TYPE);

function STATE-OF-PROCESS (PROCESS: In NAME-STRING) return PROCESS-STATUS;
function STATE-OF-PROCESS (NODE: in NODE-TYPE) return PROCESS-STATUS;

function JOB-INPUT return FILETYPE;
function JOB-OUTPUT return FILE-TYPE;

Exceptions

USE-ERROR: exception renames CAIS-NODE-DEFS.USEERROR; -

private
- implementation-dependent

end CAIS-PROCESS-CONTROL;

6.2.2 Package Semantics

subtype PROGRAM-STRING is STRING; .
subtype RESULTS-STRING is CAIS.TEXT.UTILS.TEXT;
subtype PARAMS.STRING is CAIS.TEXT.UTILS.TEXT;
subtype NAME-STRING is CAIS-NODE-DEFS.NAME-STRING;
subtype RELATIONSHIP-KEY is CAIS.NODEODEFS.RELATIONSHIPKEY;
subtype COMPLETION-STATUS is CAIS-PROCESSDEFS.COMPLETIONSTATUS;
subtype FILE-TYPE is CAIS.TEXT-IO.FILE.TYPE;
subtype NODE-TYPE is CAIS.NODE.DEFS.NODE.TYPE;
subtype PROCESS-STATUS is CAIS-PROCESS-DEFS.PROCESSSTATUS;

UNIQUE-CHILDKEY: STRING renames CAI S-NODE-DEFS.LATEST-KEY;

procedure INVOKE-PROCESS (PROGRAM: in PROGRAM-STRING;
PARAMS: in PARAMS-STRING;
RESULTS: in out RESULTS-STRING;
STATUS: out COMPLETION-STATUS;
KEY: In RELATIONSHIP-KEY: =

UNIQUE.CHILD-KEY;
STD.IN: in FILE-TYPE =

CAIS-TEXT-IO.CURRENT-INPUT;
STD-OUT: In FILE-TYPE : =

CAIS-TEXT-IO.CURRENT-OUTPUT;

3B-38

. . . .. . . . . . .



-- .. . . .

Draft CAIS 6-5

STD.ERR: In FILE-TYPE : =
CAIS-TEXT-IO.CURRENT-ERROR;

CURRNODE: In NAMESTRING := "'CURRENTNODE");

Creates a new node and a new process and passes a list of parameters to the new process. The calling task can either
supply the KEY or the CAIS implementation will assign a unique key via UNIOUE..CHILDKEY. The calling task is
suspended until the new process terminates or aborts. The results are returned as a list, along with an enumeration
specifying the process's completion status. The node of the terminated process is automatically deleted upon termination,

procedure SPAWN-PROCESS (PROGRAM: In PROGRAM-STRING:
PARAMS: In PARAMS-STRING;
NODE: In out NODE.TYPE;
KEY: In RELATIONSHIP-KEY: =

UNIQULECHILD-KEY;
STD-IN: in FILETYPE : =

CAIS__TEXT..IO.CURRENTINPUT;
STD-OUT: In FILF..TYPE : = S

CAIS-TEXT-IO.CURRENT-OUTPUT;
STD-ERR: In FILETYPE : =

CAIS-TEXT.IO.CURRENT-ERROR;
CURR..NODE: In NAME-STRING : =

'CURRENT-NODE");

Results in a new node and a new process being created to represent the execution of the specified program. Control 5
returns to the invoking process. This invocation provides no technique for coordination of the new process with its parent,
except that termination of the parent will not be completed until all children are terminated or aborted. Similarly, no technique
is provided for returning a result string to the invoking process. Communication between parent and child can be provid-
ed using the techniques provided in CAIS.PROCESS-COMMUNICATION.

procedure AWAIT-PROCESS (PROCESS: In out NODE-TYPE; •
RESULTS: In out RESULTS-STRING;
STATUS: out COMPLETION-..STATUS;
LIMIT: In DURATION: = DURATION'LAST);

Suspend the calling task and wait for the process created by SPAWN-PROCESS to complete. The USE-ERROR ex-
ception is generated if this is not the first attempt to wait for this descendant process. The result parameter and
COMPLETION-STATUS are provided by spawned process's return, even if the process completes execution before 0

the call is made. A time limit is provided in which the parameters must be received or a TIMEOUT exception is raised.

procedure GET.PARAMS(PARAMS: in out PARAMS-STRING);

Retrieve the parameters passed to a process by its caller.

procedure RETURN-TERMINATED (RESULTS: In RESULTS-STRING); 0

Await termination of all descendant processess, and then return the specified result parameter to the calling process.
The COMPLETION-STATUS will be TERMINATED.

procedure RETURN-..ABORTED (RESULTS: in RESULTS-..STRING);

Abort the current process (and all of its descendant processes) and then return the specified result parameter to the
calling process. The COMPLETION-STATUS will be ABORTED.

3B- .

.............. .



6-6 Draft CAIS

A procedure ABORT-PROCESS (PROCESS: In NAME-STRING);
procedure ABORT-PROCESS (NODE: In NODE.TYPE);

Aborts the specified process and recursively forces any descendants of the named process to be aborted. The sequenc-
ing of the process abortions is not specified. ABORT-PROCESS returns control to the issuing process immediately.
At that time, if the state of the aborted process is examined, it will be either ABORTING or the process will be non-
existent. This node associated with the aborted process remains until explicitly deleted by the invoking process.

The COMPLETION-STATUS of the process will be ABORTED. ABORT-PROCESS can be used by a process to abort
itself.

procedure SUSPEND-PROCESS (PROCESS: In NAME-STRING);
procedure SUSPEND-PROCESS (NODE: in NODE-TYPE);
procedure RESUME-PROCESS (PROCESS: In NAME-STRING);
procedure RESUME-PROCESS (NODE: In NODE.TYPE);

Suspends or resumes the designated process. SUSPEND-PROCESS can include suspension of the requesting pro-
cess. While a process is suspended, the PROCESS-STATUS is SUSPENDED. RESUME causes an immediate change
to the READY state. Similarly, the transition to SUSPENDED state takes place immediately.

function STATE-OF-PROCESS (PROCESS: in NAME-STRING) return PROCESS-STATUS;
function STATE.OF-PROCESS (NODE: in NODE-TYPE) return PROCESSSTATUS;

Returns the current state of the specified process. The PROCESS-STATUS of a process issuing that function will always
be READY.

function JOB-INPUT return FILE-TYPE;

function JOB-OUTPUT return FILE-TYPE;

Returns the standard input or output defined at the initiation of the root process of the job. In general, these files will
refer to the interactive terminal or batch input or output files, even if the current input or output file for this process has . -
been re-directed to a different file.

6.3 PACKAGE CAIS-PROCESS-COMMUNICATION

CAIS.PROCESS-COMMUNICATION provides techniques for a process to communicate with another process or itself.

A process may send and receive inter-process messages on a number of named channels. The channels are identified
by a character string with the syntax of an Ada identifier.

It is anticipated that certain channel names will eventually have standard meanings with CAIS. Each implementation . -

must identify those channel names which have special significance.

6.3.1 Package Specification

with CAIS-NODE-DEFS;

with CAIS-PROCESS-DEFS;
with CAIS-TEXT-UTILS;
package CAIS.PROCESSCOMMUNICATION Is

subtype NODE-TYPE Is CAIS-NODE-DEFS.NODE-TYPE;
subtype NAME-STRING Is CAISNODE-DEFS.NAME-STRING;
subtype CHANNEL-STRING is STRING;
subtype MESSAGLTEXT Is CAIS.TEXT-UTILS.TEXT;

3B-40

• % .



- , .-.. -o,

Draft CAIS 6-7

procedure SEND (PROCESS: In NAME-STRING;
CHANNEL: In CHANNEL-STRING;
MESSAGE: In MESSAGLTEXT;
LIMIT: In DURATION : = DURATION'LAST);

procedure SEND(NODE: In out NODE-TYPE;
CHANNEL: In CHANNEL-STRING;
MESSAGE: in MESSAGE-.TEXT;
LIMIT: In DURATION := DURATION'LAST);

procedure RECEIVE(SENDER: In out NODE-TYPE; 0
CHANNEL: in STRING;
MESSAGE: In out MESSAGE-TEXT;
LIMIT: in DURATION := DURATION'LAST);

- Exceptions

TIME-OUT: exception; S

private
- implementation-dependent

end CAIS-PROCESS-COMMUNICATION;

6.3.2 Package Semantics

subtype NODE-TYPE is CAIS.NODE.DEFS.NODE.TYPE;
subtype NAME-STRING Is CAIS.NODE.DEFS.NAME-STRING;
subtype CHANNEL-STRING Is STRING;

Provides logical name of a communication channel between communicating processes. The name is determined by
mutual agreement.

subtype MESSAGE-TEXT Is CAIS.TEXT-UTILS.TEXT;

The message being sent.

procedure SEND(PROCESS: In NAME-STRING;
CHANNEL: in CHANNEL-STRING;
MESSAGE: In MESSAGE-TEXT;
LIMIT: In DURATION : = DURATION'LAST);

procedure SEND(NODE : in out NODE-TYPE;
CHANNEL: In CHANNEL-STRING;
MESSAGE: In MESSAGE-TEXT,
LIMIT: in DURATION : = DURATION'LAST); S

Attempts to queue up the specified MESSAGE (text) for the designated process with the specified logical CHANNEL
name. If the queue is full, the calling task will be suspended up to the time LIMIT specified, after which a TIME-OUT . -

exception is raised in the calling process. As soon as there is room for the MESSAGE, it is queued and SEND returns.
It is the responsibility of the two processes to insure that whatever additional coordination required is done.

procedure RECEIVE(SENDER : In out NODE-_TYPE;
CHANNEL: In CHANNEL.STRING;
MESSAGE : in out MESSAGE-TEXT;
LIMIT: In DURATION := DURATION'LAST);

38-41

...............................................................
--. ..-. :-.-._.....................:-..........-.-,.....-..................,....-........,............,. .



6-8 Draft CAIS

Suspends the calling task until a message is available on the specified CHANNEL or the time LIMIT is reached. Multiple
queued messages are received in a first-in first-out order. The capacity of the queue for a particular channel name is
implementation dependent. However, before the first RECEIVE is done by a process on a particular channel name, the
capacity of the queue is defined to be zero, and any SENDers will be delayed because the queue is by definition already
"full." The sending process is identified by an open node handle on the process node.

6.4 PACKAGE CAIS-PROCESSANALYSIS

This package provides standardized debugging capabilities for processes within the CAIS implementation.

6.4.1 Package Specification

with CAIS-PROCESS-DEFS;
package CAIS-PROCESSANALYSIS Is
(TBD}
end CAIS-PROCESSANALYSIS;

6.5 PACKAGE CAIS-PROCESS-INTERRUPTS

This package provides support for pseudo-interrupts, asynchronous signal sent between processes. Each interrupt
is identified by a string with the syntax of an Ada identifier. When an interrupt is generated, the receiving process may
respond by ignoring it, aborting execution, waking up a suspended task, or simply putting it on HOLD.

It is anticipated that the CAIS will define standard interrupt names, as well as standard default interrupt responses
associated with each standard interrupt, in effect prior to an explicit SET-RESPONSE. The most likely default responses
are ABORT for certain serious interrupts and IGNORE for all others.

Note that the predefined Ada language mechanism for associating interrupts with tasks is not being used here, so as
to remain independent of any compiler implementation of this feature.

6.5.1 Package Specification

with CAIS-PROCESS-DEFS;
package CAIS-PROCESS-INTERRUPTS is

subtype NODE-TYPE is CAIS-PROCESS-DEFS.NODE-TYPE;

subtype NAME-STRING is CAIS-PROCESS-DEFS.NAME-STRING;

subtype INTERRUPT-NAME is STRING;

type INTERRUPT-RESPONSE is (IGNORE, ABORT, AWAKE, HOLD);

procedure SIGNAL (PROCESS: in NAME-STRING;
INTERRUPT: In INTERRUPT-NAME);

procedure SIGNAL (PROCESS: in NODE-TYPE;
INTERRUPT: In INTERRUPT-NAME);

procedure SET-RESPONSE(INTERRUPT: In INTERRUPT-NAME;
RESPONSE: In INTERRUPT-RESPONSE;
TIME-LIMIT: In DURATION := DURATION'LAST);

function RESPONSE (INTERRUPT: In INTERRUPT-NAME)
return INTERRUPT-RESPONSE;

3B-42

. . . o..



Draft CArS 6-9 0

- Exceptions

USE-ERROR: exception renames CAIS-NODLEDEFS.USE-ERROR; 0

private
- implementation-dependent

end CAIS-PROCESSINTERRUPTS;

6.5.2 Package Semantics 0

subtype NODE.TYPE Is CAIS-PROCESS-DEFS.NODE..TYPE;
subtype NAMLSTRING Is CAIS-PROCESS-DEFS.NAME..STRING;
subtype INTERRUPT-NAME Is STRING;

Typical interrupt names would be "BREAK", "HANG-UP", etc.

type INTERRUPT-RESPONSE Is (IGNORE. ABORT, AWAKE, HOLD);

This enumeration specifies the possible responses associated with an interrupt. Each interrupt has exactly one of these
responses associated with it at any one time. If the response is AWAKE, then some task has executed a SET-RESPONSE
(INTERRUPT-NAME, AWAKE, TIMELIMIT) and is still suspended awaiting the interrupt signal.

procedure SIGNAL (PROCESS: In NAMESTRING;
INTERRUPT: In INTERRUPT-NAME);

procedure SIGNAL (PROCESS: In NODE-TYPE;
INTERRRUPT In INTERRUPT-NAME);

Generates the designated pseudo-interrupt in the named process. This call always returns immediately, even if the associated -

response in the receiving process is HOLD. -

procedure SET-RESPONSE (INTERRUPT: in INTERRUPT-NAME;
RESPONSE: In INTERRUPT-RESPONSE;
TIME-LIMIT: in DURATION : = DURATION'LAST);

Handles a designated pseudo-interrupt according to the designated response. If the previously set response were HOLD, -

and the interrupt had already occurred at least once, then the newly specified response is immediately enacted. The
USE-ERROR is raised if an attempt is made to SET-RESPONSE when some other task is still suspended with the
response AWAKE. In all other cases, the new response supercedes any previous default or explicitly set response.

If the response is AWAKE, then the calling task is suspended until the interrupt is received or until the time lim|i expires
(in which case the TIME-OUT exception is raised). When setting the response to AWAKE, the previously set response
is remembered, and again becomes the current response after the task is awoken due either to an interrupt or to a time-out.

function RESPONSE (INTERRUPT: In INTERRUPT-NAME)
return INTERRUPT-RESPONSE;

Indicates the current response associated with the designated interrupt for the current process. If the response is AWAKE,
then some other task of the current process is suspended awaiting the interrupt.

6.6 PRAGMATICS

a. Channels A conforming implementation must support channel names of up to 20 characters. A
conforming implementation must support up to 20 simultaneous accepting channels
from the same process.

3B-43

............................ .-.-



7. CAIS Device Nodes

This area provides basic device input/output support, along with special device control facilities. A device must first be
made accessible to an Ada program by an OPEN, specifying the external device by a NAME and a FORM,-both character
strings. When opening device node handles, the NAME and FORM string formats are required to be the same and refer
to the same external devices in both file node usage and in the device node packages. The collection of packages in
this section are defined with careful consideration of standards established for information interchange by the American
National Standards Institute fANSI77 and [ANSI79]. The interfaces are also defined with consideration for existing in-
teractive terminals that do not conform to the ANSI standards.

7.1 VIRTUAL TERMINALS

There are three primary classes of character-imaging terminals in use today- scroll, page, and form. Four packages
are provided in this section, one package for the common terminal support functions and one package for each of the
three classes of terminals supported.

7.1.1 Package CAIS.TERMINAL__SUPPORT

This package provides the routines that are common to scroll, page, and form terminals.

7.1.1.1 Package Specification

with CAIS.NODE.DEFS;

package CAIS-TERMINAL.SUPPORT is

type TERMINAL.TYPE is limited private;

subtype FORM-STRING Is CAIS.NODL.DEFS.FORM.STRING; -"

subtype NAME-STRING is CAIS-NODE-DEFS.NAME-STRING;
subtype RELATIONSHIP-KEY is CAIS-NODE.DEFS.RELATIONSHIPKEY;
subtype RELATIONNAME is CAIS-NODEDEFS.RELATION-NAME:

type TERMINAL-CLASS is (SCROLL, PAGE, FORM);

procedure CREATE (TERMINAL: in out TERMINAL-TYPE;
CLASS: in TERMINAL-CLASS : = SCROLL;
NAME: in NAME-STRING;
FORM: in FORM-STRING : = .);

procedure CREATE (TERMINAL: In out TERMINAL-TYPE;
CLASS: in TERMINAL.CLASS : = SCROLL;
BASE: in NODE-TYPE;
KEY: in RELATIONSHIP-KEY := .

RELATION: in RELATION-NAME: = "DOT";
FORM: In FORM-STRING =

procedure OPEN (TERMINAL: In out TERMINAL...TYPE;
CLASS: In TERMINAL-CLASS := SCROLL; .- "
NAME: In NAME-STRING;
FORM: In FORM-STRING =

3B-44

• ... . ..

L . =. -.. .,'. " = " . " .. . .. . .. . -.- . . . .- -.. . , - ' ' . . % ",_ -. . _, _ _ _ _._ . _. - _ ',- . .- ' . , .



7-2 Draft CAIS .0

procedure OPEN (TERMINAL: In out TERMINAL-.TYPE,
CLASS: In TERMINALCLASS := SCROLL:
BASE: In NODE-TYPE;
KEY: In RELATIONSHIP-..KEY:=
RELATION: In RELATION-..NAME: =Dr"

FORM: In FORM-..STRING: ";
procedure OPEN (TERMINAL: in out TERMINAL..JYPE;.

CLASS: In TERMINAL-.CLASS =SCROLL;

NODE: In NODE-TJYPE;
FORM: In FORM-..STRIING:= )0

procedure CLOSE (TERMINAL: in out TERMINAL-TYPE);

procedure DELETE (TERMINAL: in out TERMINAL-TYPE);

procedure RESET (TERMINAL : in out TERMINAL-.TYPE;
CLASS : In TERMINAL-.CLASS);

procedure RESET (TERMINAL: In out TERMINAL...TYPE);

function CLASS(TERMINAL : in TERMINAL_.TYPE) return TERMINAL-.CLASS;
* ~function NAME (TERMINAL : in TERMINAL...TYPE) return NAME-.STRING;

function FORM (TERMINAL : In TERMINAL-.TYPE) return FORM-..STRING;

* ~function IS-..OPEN (TERMINAL: In TERMINAL-.TYPE) return BOOLEAN;

type ACTIVE-..POSITION is
record

LINE : POSITIVE;-
COLUMN : POSITIVE; AD

* procedure SET-POSITION (TERMINAL: in out TERMINAL-..TYPE; -

POSITION : In ACTIVE-.POSITION);

function POSITION (TERMINAL : in TERMINAL-TYPE)
return ACTIVEPOSITION;

function SIZE (TERMINAL :in TERMINAL-.TYPE)
return ACTIVE....POSITION;

-Exceptions

*CLASS-ERROR: exception;
NAME-ERROR: exception renames CAIS-..NODE...DEFS.NAME-..ERROR;
USE-..ERROR: exception renames CAIS-..NODE-..DEFS.USE-..ERROR;

* STATUS-..ERROR: exception renames CAIS-NODE-DEFS.STATUS.ERROR;

private
implementation-dependent

end CA1S-..TERMINAL...SUPPORT.

* 7.1.1.2 Package Semantics

type TERMINAL-..CLASS Is (SCROLL. PAGE. FORM); 4

3B-45



Draft CAIS 7-3

Indicates the different classes of terminals that are supported.

procedure CREATE (TERMINAL: In out TERMINAL-TYPE;
CLASS: in TERMINAL-CLASS := SCROLL;
NAME: In NAME-STRING;
FORM: in FORMSTRING :=

Creates an extenal termnal (and its device node) that is associated with the given terminal. The given terminal is left
open. A null string for the FORM specifies default options of the implementation.

The exception STATUS-ERROR is raised if the given terminal is already open. The exception NAME-ERROR is rais-
ed if the NAME does not identify an external logical terminal.

procedure CREATE (TERMINAL: in out TERMINAL-TYPE;
CLASS: in TERMINAL-CLASS : = SCROLL;
BASE: In NODE-TYPE;
KEY: in RELATIONSHIP-KEY : =
RELATION: in RELATION-NAME: = "DOT";
FORM: in FORM-STRING : =

The semantics are the same as above except that the terminal is identified by means of BASE/KEY/RELATION.

procedure OPEN (TERMINAL: in out TERMINAL-TYPE;
CLASS: in TERMINAL-CLASS := SCROLL;
NAME: In NAME-STRING;
FORM: In FORM-STRING := " ");

Associates the given terminal handle with a terminal having the given name and form and sets the current class of the
terminal handle to the given class.

The exception NAME.ERROR is raised if the string given as NAME does not identify a terminal. The exception
USE-ERROR is raised if the terminal identified by NAME cannot be opened in the given class or form.

procedure OPEN (TERMINAL: in out TERMINAL-TYPE;
CLASS: in TERMINAL-CLASS : = SCROLL:
BASE: in NODE-TYPE;
KEY: in RELATIONSHIP-KEY : =
RELATION: in RELATION-NAME: --"DOT";
FORM: in FORM-STRING : =

procedure OPEN (TERMINAL: in out TERMINAL-TYPE;
CLASS: in TERMINAL-CLASS : = SCROLL;
NODE: in NODE-TYPE;
FORM: in FORM-STRING : =

The semantics are the same as above except that the terminal is identified by means of the associated node or

BASEIKEY/RELATION.

procedure CLOSE (TERMINAL :in out TERMINAL....TYPE);

Severs the association between the terminal handle and its associated terminal.

procedure DELETE (TERMINAL: in out TERMINAL-.TYPE);

Deletes the external terminal (and its device node) associated with the given terminal. The given terminal is closed,
and the external logical terminal ceases to exist.

3B-46

.................. . . *.... ...



7-4 Draft CAIS 0

The exception STATUS-ERROR is raised if the given terminal is not open. The exception USE-ERROR is raised if
deletion of the external logical terminal is not allowed by the caller.

procedure RESET (TERMINAL : In out TERMINAL-.TYPE;
CLASS: In TERMINALCLASS);

procedure RESET (TERMINAL: In out TERMINAL._TYPE); .j

Changes the terminal handle to the given class and/or resets the terminal handle to Its initial state.

function CLASS(TERMINAL : In TERMINAL-TYPE) return TERMINAL..CLASS;

Returns the class of the node associated with the given terminal handle.

function NAME (TERMINAL: In TERMINAL-TYPE) return NAME-STRING;

Returns the name of the node associated with the given terminal handle.

function FORM (TERMINAL: in TERMINAL-TYPE) return FORM-STRING;

Returns the form associated with the given terminal handle.

function IS-OPEN (TERMINAL: In TERMINAL-TYPE) return BOOLEAN;

Returns TRUE if the given terminal handle is associated with a logical terminal, otherwise returns FALSE.

type ACTIVE-POSITION Is
record

LINE : POSITIVE;
COLUMN : POSITIVE;

end record;

The ACTIVE-POSITION indicates the row and column position on the display of a terminal at which the next operation
may occur.

procedure SET-POSITION (TERMINAL: In out TERMINAL-TYPE;
POSITION : In ACTIVE-POSITION);

Moves the active position to the specified POSITION on the display of the given terminal.

function POSITION (TERMINAL: in TERMINAL_-TYPE)
return ACTIVE-POSITION;

Returns the POSITION of the active position on the given terminal.

function SIZE (TERMINAL: In TERMINAL.-TYPE)
return ACTIVE-POSITION;

Returns the maximum line and maximum column of the given terminal,

7.1.2 Package CAIS-SCROLLTERMINAL

This package provides the functionality of a common "teleprinter" type terminal. It is capable of a minimal set of opera-
tions. Characters are transmitted between a program and the terminal a character or a line at a time. This type of ter-
minal is typically configured to echo each character as It is entered at the keyboard (before transmission to the computer

or intervening communications equipment).

3B-47

... . -.".. . . . . . . . . . . . . . . . . . . . . .

. ,% . ... % '. ..,. % .. % - - . .° .. . -. %. % ,." .. .. . . .. • ° . . .... . .-.. . . .. . . . . . .... .,.. . .... ... ...... .... .•.. . . . ......... ...



Draft CAIS7-

7.1.2.1 Package Specification

* ~with CAIS-..NODLflEFS;
with CAiS....TERMINAL...SUPPORT;
package CAIS...SCROLL-TERMINAL Is

subtype TERMINAL-.TYPE is CAIS-..TERMINAL..SUPPORT.TERMINAL..TYPE; '

procedure SET-..TAB (TERMINAL: in out TERMINAL-.TYPE);

procedure CLEAR-TAB (TERMINAL: In out TERMINAL.JYPE);

procedure TAB (TERMINAL: In out TERMINAL-TYPE;
COUNT: In POSITIVE);

procedure NEW-..LINE (TERMINAL: In out TERMINAL...TYPE);

procedure NEW-P.AGE (TERMINAL: In out TERMINAL..TYPE);

procedure PUT (TERMINAL: In out TERMINAL-.TYPE;
ITEM: in CHARACTER);

procedure PUT (TERMINAL: in out TERMINAL-.TYPE;
ITEM: in STRING); -

procedure UPDATE ([TERMINAL: in out TERMINAL..YYPE);

procedure GET (T7ERMINAL: in out TERMINAL-.TYPE;
ITEM: out CHARACTER);

procedure GET (TERMINAL: in out TERMINAL-.TYPE;
ITEM : out STRING),

procedure GET (TERMINAL: in out TERMINAL-.TYPE;
ITEM: out STRING;
LAST: out NATURAL);

procedure SET-ECHO (TERMINAL: in TERMINAL-TYVPE;
TO: ini BOOLEAN : = TRUE);...

function ECHO (TERMINAL: In TERMINAL,-TYPE) return BOOLEAN;

procedure BELL (TERMINAL: in out TERMINAL...TYPE);

-Exceptions

CLASS-ERROR : exception renames CAlS-..TERMINAL..SUPPORT.CLASS-..ERROR;
USE-ERROR: exception renames CAIS-..NODE...DEFS.USE...ERROR;

private ..-

en implementation-dependent

7.1.2.2 Package Semantics

procedure SET-TAB (TERMINAL: In out TERMINAL,.TYPE);

Creates a horizontal tab stop at the active position (used by TAB).

procedure CLEAR-..TAB (TERMINAL: In out TERMINAL..TYPE);

3B-48

...................................................



7-6 Draft CAIS

Deletes a horizontal tab stop at the active position. The exception USLERROR is raised if a horizontal tab stop does
not exist at the active position.

procedure TAB (TERMINAL: In out TERMINAL.-TYPE;"
COUNT: In POSITIVE);

Moves the active position the specified number of horizontal tab stops. The exception USE-ERROR is raised if there

are fewer than COUNT tab stops on the active line.

procedure NEW-LINE (TERMINAL: In out TERMINALTYPE); 9

Moves the active position to the first column of the next line. The display scrolls upward if entered on the last line of
the display.

procedure NEW-PAGE (TERMINAL : in out TERMINALTYPE);

Moves the active position to the first column of the first line of a new page. 0

procedure PUT (TERMINAL: in out TERMINAL-TYPE;
ITEM: In CHARACTER);

Writes a single character to the display and advances the active position. If the active position is at the last column
on a line, a NEW-LINE operation is performed after writing the character.

procedure PUT (TERMINAL: In out TERMINAL-_TYPE;
ITEM: In STRING);

Writes a character at a time in the same manner as PUT of a character, writing each character in the given string
successively.

procedure UPDATE (TERMINAL: in out TERMINAL__TYPE); -

Forces all data that has not already been transmitted to the terminal to be transferred.

procedure GET (TERMINAL : In out TERMINAL-.TYPE;
ITEM: out CHARACTER);

Reads a single (unedited) character from the terminal keyboard.

procedure GET (TERMINAL: In out TERMINAL.-TYPE;
ITEM: out STRING);

Reads ITEM'LENGTH (unedited) characters from the terminal keyboard into ITEM.

procedure GET (TERMINAL : In out TERMINAL__TYPE;
ITEM: out STRING;
LAST: out NATURAL);

Successively reads (unedited) characters from the terminal keyboard into ITEM, until either all positions of ITEM are
filled or there are no more characters buffered for the terminal. Upon completion LAST contains the index of the last
position in ITEM to contain a character that has been read.

procedure SET-ECHO (TERMINAL: in TERMINAL.-TYPE;

TO: In BOOLEAN := TRUE);

When TO is given as TRUE, each character entered at the keyboard is echoed to the display.

function ECHO (TERMINAL: In TERMINAL-TYPE) return BOOLEAN;

3B-49

- . . . .



Draft CAIS 7-7

Returns whether echo is enabled (TRUE) or disabled (FALSE).

procedure BELL (TERMINAL : In out TERMINALTYPE); P

Activates the bell (beeper) on the terminal.

- Exceptions

CLASS-ERROR: exception renames CAIS.TERMINAL_.SUPPORT.CLASS-ERROR;
USE-ERROR: exception renames CAISNODLEDEFS.USEERROR;

The exception CLASS-ERROR is raised if any of the operations in the package CAIS.SCROLL_.TERMINAL are in-
voked with a TERMINAL which is not OPENed or RESET with class SCROLL.

7.1.3 Package CAIS.PAGE.TERMINAL

This package provides the functionality of a page terminal. A page terminal is commonly referred to as a character-
oriented or interactive terminal. This terminal may have many types of format effectors, cursor controls, and local (built-
in) editing functions. Typical controls for page terminals are to position the cursor, to erase within a line or display area,
to insert into or delete from a line, to insert or delete entire lines, to scroll up, and to select graphic rendition for subse- •- . -
quent output characters (intensity, reverse-image, blink, underscore, etc.). The terminal may be configured to echo before -.
transmission to the computer (or intervening equipment) or not to echo at all. Each character is transmitted to the com-
puter as it is entered at the keyboard. Except when locally echoed, the control action implied by the character keyed
is deferred until (and if) the computer (or communications equipment) echoes the character. (This allows some programs,
operating with non-echoing terminals, to reinterpret the meanings of control characters keyed by not directly echoing
these characters. A number of popular text editors operate this way.)

7.1.3.1 Package Specification

with CAISNODEDEFS;
with CAIS-TERMINAL-SUPPORT;
package CAIS.PAGE-TERMINAL Is

subtype TERMINAL-TYPE Is CAIS-TERMINAL-SUPPORTTERMINAL-TYPE;

procedure SET-TAB (TERMINAL: in out TERMINALTYPE);

procedure CLEAR-TAB (TERMINAL: In out TERMINALTYPE);

procedure TAB (TERMINAL: in out TERMINAL-TYPE;
COUNT: in POSITIVE); -

procedure BELL (TERMINAL: In out TERMINAL-TYPE);

procedure DELETE-CHARACTER (TERMINAL: in out TERMINAL-TYPE;
COUNT: in POSITIVE);

procedure DELETE-LINE (TERMINAL: In out TERMINAL-TYPE;
COUNT: In POSITIVE);

function ECHO (TERMINAL: In TERMINAL.-TYPE) return BOOLEAN;

procedure ERASE-CHARACTER (TERMINAL: In out TERMINAL-TYPE;
COUNT: In POSITIVE);

type SELECTENUM is
(FROM.ACTIVLEPOSITIONTOEND,

3B-50

-. % ..% °-..- %%- , .. o... ... .. '....... ......... =..°.. .bo..... °.. *J q Zjw J-J-. ~j - L -- - - - . - ---.. . . . . . ....... . .. -,



7-8 Draft CAIS

FROM-STARTTOACTIVE..POSITION,
ALL-.POSITIONS);

procedure ERASE-..N...DISPLAY (TERMINAL: In out TERMINAL-...TYPE:
SELECTION: In SELECT...ENUM);

procedure ERASLJN.LINE (TERMINAL: In out TERMINAL-..TYPE;
SELECTION: in SELECT-..ENUM);

procedure GET (TERMINAL: In out TERMINAL-TYPE; -

ITEM : out CHARACTER);
procedure GET (TERMINAL : in out TERMINAL-TYPE;

ITEM: out STRING;
procedure GET (TERMINAL: In out TERMINAL-TYPE;

ITEM: out STRING;
LAST: out NATURAL);

procedure INSERT-CHARACTER (TERMINAL: In out TERMINAL-TJYPE.
COUNT: In POSITIVE);

procedure-INSERL..LINE (TERMINAL: In out TERMINAL-.TYPE;
COUNT: In POSITIVE);

procedure PUT (TERMINAL: In out TERMINAL-..TYPE;
ITEM: In CHARACTER);

procedure PUT (TERMINAL: In out TERMINAL-.TYPE.
ITEM: In STRING);

type GRAPHIC-RENDITION-.ENIUM is
(PRIMARY-RENDITION,
SOLD,
FAINT.
UNDERSCORE,
SLOW-BLINK,
RAPID-BLINK,REES-IAE

procedure SELECT...GRAPHIC-..RENDITION (TERMINAL: In out TERMINAL-..TYPE;
SELECTION : in GRAPHIC-..RENDITION-ENUM),

* procedure SET-..ECHO (TERMINAL: in out TERMINAL-..TYPE;
TO: in BOOLEAN : =TRUE); -

procedure UPDATE (TERMINAL: In out TERMINAL....TYPE);

-Exceptions

* CLASS-..ERROR: exception renames CAIS-TERMINAL..SUPPORCLASS-.ERROR;
USE-.ERROR : exception renames CAIS-..ODE-..DEFS.USE...ERROR;

* primae
* - impiementstiondependent

end CAIS-M..AE-..TERMINAL;

?.1.3.2 Packae Semantics

*procedure SET-TAB (TERMINAL: int out TERMINAL-..YPE);

3B-51



|- Draft CAIS 7-9

Creates a horizontal tab stop at the active position.

procedure CLEAR-TAB (TERMINAL : In out TERMINAL-TYPE);

Deletes a horizontal tab stop at the active position. The exception USE-ERROR is raised if a horizontal tab stop does
not exist at the active position.

procedure TAB (TERMINAL: In out TERMINAL-TYPE;
COUNT: in POSITIVE); _

Moves the active position the specified number of horizontal tab stops. The exception USE-ERROR is raised it there
are fewer than COUNT tab stops on the active line.

procedure BELL (TERMINAL : in out TERMINALTYPE);

Activates the bell (beeper) on the terminal.

procedure DELETE-CHARACTER (TERMINAL : in out TERMINAL.-TYPE;
COUNT: In POSITIVE);

Deletes the given number of characters on the active line starting at the active position. Adjacent characters to the right
of the active position are shifted left. Open space on the right is filled with SPACE characters. The active position is
not changed.

procedure DELETE-LINE (TERMINAL: In out TERMINAL__TYPE;
COUNT: In POSITIVE);

Deletes the given number of lines starting at the active line. Adjacent lines are shifted from the bottom toward the active
line. COUNT lines from the bottom of the display are cleared. The active position is not changed.

function ECHO (TERMINAL: in TERMINAL_TYPE) return BOOLEAN;

Returns whether echo is enabled (TRUE) or disabled (FALSE).

procedure ERASE-CHARACTER (TERMINAL: In out TERMINAL-TYPE;
COUNT: In POSITIVE);

Replaces the given number of characters on the active line with SPACE characters starting at the active position. The
active position is not changed. The exception USE-ERROR is raised if COUNT is greater than SIZE(TER-
MINAL).COLUMN-POSITION(TERMINAL).COLUMN.

type SELECT.ENUM is
(FROM-ACTIVE-POSITIONTO.END,
FROM-STARTTO__ACTIVEPOSITION,
ALL-POSITIONS);

procedure ERASE.IN.DISPLAY (TERMINAL: In out TERMINAL-TYPE;

SELECTION :In SELECT.ENUM);

Erases the characters in the entire display as determined by the active position and the given SELECTION (include
the active position). The active position is not changed.

procedure ERASE-.IN.LINE (TERMINAL: In out TERMINAL-.TYPE;
SELECTION: In SELECT.ENUM);

Erases the characters in the active line as determined by the active position and the given SELECTION (include the
active position). The active position is not changed.

3B-52

7



7-10 Draft CAIS 0

procedure GET (TERMINAL: In out TERMINAL-TYPE; . "

ITEM: out CHARACTER);

Reads a single (unedited) character from the terminal keyboard. 0

procedure GET (TERMINAL: In out TERMINAL-YPE;
ITEM: out STRING);

Reads ITEM'LENGTH (unedited) characters from the terminal keyboard into ITEM.

procedure GET (TERMINAL: In out TERMINAL-TYPE; 0
ITEM: out STRING;
LAST: out NATURAL);

Successively reads (unedited) characters from the terminal keyboard into ITEM, until either all positions of ITEM are
filled or there are no more characters buffered for the terminal. Upon completion LAST contains the index of the last
position in ITEM to contain a character that has been read. B

procedure INSERT-CHARACTER (TERMINAL: In out TERMINAL-TYPE;
COUNT: In POSITIVE);

Inserts COUNT SPACE characters into the active line at the active position. Adjacent characters are shifted to the right.
The rightmost characters on the line may be lost. The active position is advanced to the right one character position.

procedure INSERT-..LINE (TERMINAL: in out TERMINAL-TYPE;
COUNT: in POSITIVE); -.

Inserts COUNT blank lines into the display at the active line. The lines at and below the top of the display are lost. The
active position remains unchanged.

procedure PUT (TERMINAL : In out TERMINAL.-TYPE; .
ITEM: in CHARACTER);

Writes a single character at the active position. Advances the active position to the next column. If the character is writ.
ten to the last character position on a line, advances the active position to the first column of the next line. If the character
is written to the last character position of the last line, inserts a line at the bottom of the display and moves the active
position to the first column of the last line.

procedure PUT (TERMINAL: In out TERMINAL__TYPE;

ITEM: in STRING);

Writes each character of the given string according to the semantics for PUT with ITEM as a single character.

type GRAPHIC.RENDITION.ENUM is
(PRIMARYRENDITION,
BOLD,
FAINT,
UNDERSCORE,
SLOW-BLINK,
RAPID-BLINK,
REVERSE-IMAGE); _

procedure SELECT.GRAPHIC.RENDITION (TERMINAL: In out TERMINAL.-TYPE;
SELECTION: In GRAPHIC-RENDITION-ENUM);

Set the graphic rendition for subsequent characters to be PUT. If the graphic rendition specified is not supported by
the terminal, the primary rendition is used. The exception USLERROR is raised if the specified graphic rendition is
not supported.

3B-53

.............. ................ ......

.. .. . .. . .. .. . ......... . -. • . ........ .- °... °...•



Draft CAIS 7-11

procedure SET-ECHO(TERMINAL: in out TERMINAL__TYPE;

TO: In BOOLEAN : = TRUE);

Turns on (TRUE) or off (FALSE) echoing for input file.

procedure UPDATE (TERMINAL: in out TERMINAL-TYPE);

- Forces all data that has not already been transmitted to the terminal to be transmitted.

- Exceptions

CLASS-ERROR : exception renames CAIS-TERMINAL-SUPPORT.CLASSERROR;
USE-ERROR: exception renames CAISNODEDEFSUSEERROR;

The exception CLASS-ERROR is raised if any of the routines in the package CAIS-PAGE.TERMINAL are invoked
with a terminal handle which is not OPENed or RESET with class PAGE.

7.1.4 Package CAIS-FORM-TERMINAL

This package provides functionality for manipulating a form terminal. A form terminal controls much of the display modifica-
tion itself (or within local "cluster" controllers). Typically a form is built by writing control and prompting characters to
desired positions on the display, setting specific character positions to be guarded (protected, as for prompts) or unguarded --
(unprotected, as for ill-in qualified area), and designating the attributes of the characters (legal entries, color, and intensity.
The display is divided into areas of contiguous character positions (qualified area space) that have the same attributes (e.g.,
unprotected, high intensity). Once the form is built, the form is transmitted to the terminal. At this point, the terminal
is in "local" control of the display. The user may move the cursor about on the display, insert, delete, and replace characters
in any unprotected area of the display (all under local control, without use of the computer or communications circuitry).
When the user has finished all the modifications/entries that are desired, the user presses a special key (function key -

or enter key) which causes the modified portions of the display to be accessible to the program.

7.1.4.1 Package Specification

with CAIS-NODEDEFS;
with CAISTERMINAL_.SUPPORT;
package CAIS.FORM-TERMINAL is -

subtype TERMINAL-TYPE is CAIS.TERMINAL-SUPPORT.TERMINAL-TYPE;

type TERMINATIONKEYRANGE is INTEGER
range 0 . implementation-defined;

type AREA-INTENSITY is
(NONE,
NORMAL,
HIGH);

type AREA-PROTECTION is
(UNPROTECTED,
PROTECTED);

type AREA-_INPUT is
(GRAPHIC-CHARACTERS,
NUMERICS
ALPHABETICS);

3B-54

. . . . . . . . . . . . . . . . . . . . - .



7-12 Draft CAIS

type AREA-..VALUE Is
(NO-...FILL,
FILL-.WITH...ZEROES,
FILL..WITH-..SPACES);

procedure DEFINE-OUALIFED..AREA (TERMINAL: in out TERMINALTYPE;
INTENSITY: in AREA-..INTENSITY =NORMAL;

PROTECTION: in AREA-P.ROTECTION-
PROTECTED;

INPUT: In AREA-INPUT := 09
GRAPHIC-..CHARACTER-I.NPUT;

VALUE: In AREA-.VALUE :=NO-..FILL);

procedure CLEAR..OUALIFIED...AREA (TERMINAL: in out TERMINAL...TYPE);

procedure TAB (TERMINAL: In out TERMINAL-..TYPE;
COUNT: In POSITIVE);

procedure PUT (TERMINAL: in out TERMINALiTYPE;
ITEM: in CHARACTER);

procedure PUT (TERMINAL: in out TERMINAL-.TYPE, 7
ITEM: In STRING);-

procedure ERASE-...AREA (TERMINAL: in out TERMINAL-TYPE);

procedure ERASE-DISPLAY (TERMINAL: in out TERMINAL..TYPE);

procedure ACTIVATE-.FORM (TERMINAL: In out TERMINAL..JVPE);

procedure GET (TERMINAL : in out TERMINAL-T.YPE; -

ITEM: out CHARACTER);
procedure GET (TERMINAL: In out TERMINAL-TYPE;

ITEM: out STRING);

function 1S-FORM-UPDATED (TERMINAL: in TERMINAL-..TYPE return BOOLEAN;

function TERMINATION-KEY (TERMINAL : In TERMINAL.TYPE) return TERMINATION...KEY...RANGE;

function AREA-OJALIFIER-REOUIRES-.SPACE (TERMINAL: in TERMINAL-..TYPE) return BOOLEAN;

* - Exceptions

CLASS-.ERROR :exception renames CAIS-..TERMINAL-SUPPORT.CLASS..ERROR;
USE-ERROR : exception renames CAIS-..NODE-.DEFS.USE-..ERROR;

private
* - implementation-dependent

* end CAIS.FORM-jTERMINAL;

* 7.1.4.2 Package Semantics

subtype TERMINA-TYPE Is CAIS-..TERMINAL..SUPPORT.TERMINAL-T.YPE;

* ~~type TERMINATION-..KEY...RANGE Is INTEGER range 0.. implemen~tation-..defined;

3B-55

n0



Draft CAIS 7-13

type AREA.INTENSITY Is
(NONE,
NORMAL,
HIGH);

type AREA__PROTECTION is
(UNPROTECTED,
PROTECTED);

type AREA-INPUT is -.

(GRAPHIC-CHARACTERS,
NUMERICS,
ALPHABETICS);

type AREA.-VALUE is
(NO-FILL,
FILL-WITH.ZEROES,
FILL-WITH-SPACES);

These types define the attributes for a qualified area of a form. AREA-INTENSITY indicates the intensity at which the
characters in the area should be displayed (NONE indicates that characters are not displayed). AREA-_PROTECTION
specifies whether the user can modify the contents of the area when the form has been activated. AREA._INPUT specifies
the valid characters that may be entered by the user (GRAPHIC-CHARACTERS indicates that any printable character
may be entered). AREA-VALUE indicates the initial value that the area should have when activated (NO-FILL indicates
that the value has been specified by a previous PUT statement).

procedure DEFINE-QUALIFIED..AREA (TERMINAL: In out TERMINAL_-TYPE;
INTENSITY: In AREA.INTENSITY: = NORMAL;
PROTECTION: in AREA-_PROTECTION: = PROTECTED;
INPUT: In AREA__INPUT:-

GRAPHIC-CHARACTERINPUT;
VALUE: in AREA.VALUE: = NO-FILL);

Indicates that the active position is the first character position of a qualified area. The end of the qualified area is in-
dicated by the beginning of the following qualified area.

procedure CLEAR.OUALIFIED.AREA (TERMINAL: In out TERMINAL_.TYPE);

Removes an area qualifier from the active position.

procedure TAB (TERMINAL: In out TERMINAL-TYPE;
COURT: In POSITIVE);

Moves the active position the specified number of qualified areas toward the end of the display. The active position
is the first character position of the designated qualified area. The exception USE-ERROR is raised if there are fewer -

than COUNT qualified areas after the active position.

procedure PUT (TERMINAL: In out TERMINAL.-TYPE;
ITEM: In CHARACTER);

Writes a character to the display in the active position. The column of the active position is incremented by one. If the
character is written in the last column of a line, the active position is advanced to the first column of the following line.
If the character is written to the last column of the last line, the active position is moved to the first column of the first
line. If the area qualifier takes space on the display, writing to the position containing an area qualifier removes the
area qualifier. Only characters in the range SPACE through STANDARD.ASCIITILDE may be written. An attempt to
write any other character raises the USLERROR exception.

38-56

.:..-o °-. .-.- o •- . °. . .,. ... - . ° -.. , .' . .Y - o - - . -. °. - .. . . . . . . . ..°• - • ° . .,



7-14 Draft CAIS

procedure PUT (TERMINAL: In out TERMINAL-TYPE;

ITEM: In STRING);

Writes each character of the ITEM according to the semantics for writing an individual character.

procedure ERASE.AREA (TERMINAL: in out TERMINALTYPE);

Clears the area in which the active position is located.

procedure ERASE-DISPLAY (TERMINAL : In out TERMINAL_.TYPE);

Clears the display and removes all area qualifiers.

procedure ACTIVATE-FORM (TERMINAL :n out TERMINAL.-TYPE);

Activates the form that has been created enabling the user to edit the form. Returns control to the calling task when
user enters a termination key. .. -

procedure GET (TERMINAL: in out TERMINAL.-TYPE;
ITEM: out CHARACTER);

Reads a character from the display at the active position. Advances the active position forward one position. An area
qualifier (on a display on which the area qualifier requires space) is read as the SPACE character.

procedure GET (TERMINAL: in out TERMINAL-TYPE; .
ITEM: out STRING);

Reads ITEMLENGTH characters from the display one at a time filling the ITEM from ITEM'FIRST through ITEM'LAST.

function IS.FORM-UPDATED (TERMINAL: in TERMINAL-TYPE) return BOOLEAN; --

Returns whether the form was modified by the user during the previous ACTIVATE-FORM operation.

function TERMINATION-KEY (TERMINAL : in TERMINAL.TYPE) return TERMINATION-KEY-RANGE;

Returns a number that indicates which (implementation dependent) key terminated the ACTIVATE-FORM procedure.
A value of zero indicates the normal termination key (i.e., the ENTER key).

function AREA.QUALIFIER-REQUIRES.SPACE (TERMINAL : in TERMINAL.-TYPE)
return BOOLEAN;

Returns TRUE it the area qualifier requires space on the display.

-Exceptions .

CLASS-ERROR : exception renames CAIS-TERMINAL.SUPPORT.CLASS.ERROR;
USE-ERROR : exception renames CAIS-NODE-DEFS.USE-ERROR;

The exception CLASS.ERROR is raised if any of the routines in the package CAISFORMTERMINAL are invoked
with a terminal handle which is not OPENed or RESET with class FORM. 9

7.2 PACKAGE CAIS.DEVICECONTROL

This package provides physical device control interfaces. For each device type, there is a set of operations defined to
manipulate the device.

Certain generic devicinted status information is available outside of the specific packages.

3B-57



Draft CAIS 7-15

7.2.1 Package Specification

package CAIS.DEVICE...CONTROL Is
(TB))

end CAIS-..DEVICE-..CONTROL;

3B-58



8. CAIS UTI.TIES

This area provides packages for manipulating strings and parameter lists. It also defines additional pragmatic requirements
for a conforming implementation of the predefined Ada LRM packages. 0

8.1 PREDEFINED LANGUAGE ENVIRONMENT

The facilities described in the Ada LRM that are used directly by the CAIS include the packages STANDARD and SYSTEM,
as discussed in the following subsections. See the Pragmatics Section 8.3.

8.1.1 Package STANDARD

Package STANDARD forms the outermost scope of g1l Ada compilation units.

Package STANDARD is not replaceable by implementors of the CAIS, and hence the "CAIS" prefix is not used.

8.1.2 Package SYSTEM

The package SYSTEM is provided as a language-defined package which defines certain parameters of the language
implementation.

Package SYSTEM is not replaceable by implementors of the CAIS. and hence the "CAIS-" prefix is not used. . -

8.2 PREDEFINED UTILITY PACKAGES

The utilities necessary for the support of other CAIS interfaces include the packages CAIS.TEXT.UTILS and
CAIS-LIST-UTILS, as discussed in the following sections.

8.2.1 Package CAIS.TEXT.UTILS

This package implements basic operations on a string type which is of dynamic length. It defines the type used to imple-
ment lists and is used for MESSAGE-_TEXT, PROCESS-STRING, and RESULTS.STRING. .

8.2.1.1 Package Specification

package CAIS....TEXT...UTILS is
MAXIMUM : constant: = implementation.defined;
subtype INDEX Is INTEGER range O...MAXIMUM; _

type TEXT Is limited private;

function LENGTH (T: TEXT) return INDEX;
function VALUE (T: TEXT) return STRING;
function EMPTY (T: TEXT) return BOOLEAN;

..

3B-59

.... ....



8-2 Draft CAIS

Fprocedure INITTEXT(T: in out TEXT);

procedure FREE TEXT(T: In out TEXT);

function TO-..TEXT (S: STRING) return TEXT;
function TO-TEXT (C: CHARACTER) return TEXT;

function ~ (LEFT: TEXT; RIGHT: TEXT) return TEXT;
function &" (LEFT: TEXT; RIGHT: STRING) return TEXT;
function "&" (LEFT: STRING; RIGHT: TEXT) return TEXT;
function &" (LEFT: TEXT; RIGHT: CHARACTER) return TEXT;
function "&" (LEFT: CHARACTER; RIGHT: TEXT) return TEXT;

function"& (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function = (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function "<= (LEFT: TEXT; AIGHT: TEXT) return BOOLEAN;
function "<>" (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function >" (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;

procedure SET (OBJECT: In out TEXT; VALUE: In TEXT);
procedure SET (OBJECT: in out TEXT; VALUE: in STRING);
procedure SET (OBJECT: in out TEXT; VALUE: In CHARACTER);

- procedure APPEND (TAIL: In TEXT; TO: In out TEXT);

procedure APPEND (TAIL: In STRING; TO: In out TEXT);
procedure APPEND (TAIL: in CHARACTER; TO: in out TEXT);

procedure AMEND (OBJECT: In out TEXT;
BY: In TEXT;
POSITION: In INDEX); -

procedure AMEND (OBJECT: in out TEXT;
BY: In STRING;
POSITION: In INDEX);

procedure AMEND (OBJECT: in out TEXT;
BY: In CHARACTER;
POSITION: in INDEX);

function LOCATE (FRAGMENT: TEXT; WITHIN: TEXT) return INDEX;-
function LOCATE (FRAGMENT: STRING; WITHIN: TEXT) return INDEX;
function LOCATE (FRAGMENT: CHARACTER; WITHIN: TEXT) return INDEX;

private
implementation-dependent

end CAIS-TEXT-UTILS;

8.2.1.2 Package Semantics

type TEXT is limited private;

The type is made limited private because it may be reference counted and automatically freed at last use.

function LENGTH (T: TEXT) return INDEX;
function VALUE (T: TEXT) return STRING;
function EMPTY (T: TEXT) return BOOLEAN;

Provides text string functions.

procedure INIT.TEXT(T: In out TEXT);

3B-60



Draft CAIS 8-3

Creates a null string.

procedure FREE-TEXT(T: In out TEXT);.7

Frees a string.

function TO-..TEXT (S: STRING) return TEXT;
function TO-..TEXT (C: CHARACTER) return TEXT;

Converts the given string or characters to text.

function "&" (LEFT: TEXT; RIGHT: TEXT) return TEXT;
function &"(LEFT: TEXT; RIH:SRN) return TEXT;

*function &"(LEFT: STRING; RIGHT: TEXT) return TEXT;
function &"(LEFT: TEXT; RIGHT: CHARACTER) return TEXT;
function ' (LEFT: CHARACTER; RIGHT: TEXT) return TEXT;

* Concatenates to text.

function =' (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function < '(LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function <' (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN,
function > (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function > (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;

Provides indicated comparison functions.

*procedure SET (OBJECT: In out TEXT; VALUE: in TEXT);
procedure SET (OBJECT: In out TEXT; VALUE: In STRING);
procedure SET (OBJECT: In out TEXT; VALUE: in CHARACTER);

Sets the object to the given value.

procedure APPEND (TAIL: In TEXT; TO: in out TEXT); .-

procedure APPEND (TAIL: In STRING; TO: In out TEXT);
procedure APPEND (TAIL: In CHARACTER; TO: In out TEXT);

Appends the given TAIL to the TO TEXT.

procedure AMEND (OBJECT: in out TEXT;
BY: In TEXT;
POSITION: In INDEX);

procedure AMEND (OBJECT: in out TEXT;
BY: In STRING;
POSITION: In INDEX);

procedure AMEND (OBJECT: In out TEXT;
BY: in CHARACTER;
POSITION: In INDEX);

Replaces part of the OBJECT by the given TEXT, STRING, or CHARACTER starting at the given position in the OBJECT.

function LOCATE (FRAGMENT: TEXT; WITHIN: TEXT) return INDEX;
function LOCATE (FRAGMENT: STRING; WITHIN: TEXT) return INDEX;
function LOCATE (FRAGMENT: CHARACTER; WITHIN: TEXT) return INDEX;

BReturns the INDEX of the FRAGMENT within the given TEXT.

38-61



8-4 Draft CAIS

8.2.2 Package CAIS-LIST-UTILS

This package is generally useful for the manipulation of all lists built following the CAIS parameter list conventions: a
parenthesized, comma-separated list of items, each item in the form of a list, a string without embedded spaces or
separators, or a quoted string following the Ada syntax rules, optionally preceded by a keyword identifier and a "right
arrow." This syntax roughly corresponds to the Ada syntax for aggregates or for subprogram calling sequences. An
approximate BNF for the CAIS list is as follows:

LIST ::= C('[KEYWORD'= ']ITEM {',KEYWORD'= ']ITEM ')'
ITEM ::= IDENTIFIER I NUMBER I LIST I OUOTED-STRING
KEYWORD :: = IDENTIFIER
QUOTED-STRING :: = ... { NONQOUOTE-CHARACTER .

The package CAIS.LIST-UTILS uses the TEXT type defined within CAISTEXT.UTILS and defines additional opera-
tions. It defines the type list which is used to represent CAISATTRIBUTE values.

8.2.2.1 Package Specification

with CAIS-TEXT-UTILS;
package CAIS.LIST-UTILS Is

type COUNT is range 0. . implementation-defined,
subtype POSITIVE-COUNT is COUNT range 1 . . COUNT'LAST;
subtype LIST is CAIS-TEXT-UTILS.TEXT;
subtype KEY-STRING is STRING;
type ITEM-KIND is (LIST, IDENTIFIER, NUMBER, QUOTED-STRING);

procedure INIT-LIST(L: in out LIST):

procedure FREE-LIST(L: in out LIST);
function IS-EMPTY (L: in LIST) return BOOLEAN;
function KIND (L: in LIST) return ITEM-KIND;

function OUOTED-STRING (L: in LIST) return STRING;
function IDENTIFIER (L: in LIST) return STRING;
function NUMBER (L: in LIST) return INTEGER;

procedure TO-LISTOQUOTED (L: in out LIST; FROM: STRING);

procedure TOLIST (L: in out LIST; FROM: STRING);
procedure TO-LIST (L: in out LIST; FROM: INTEGER);

procedure SET (L: in out LIST; VALUE in LIST);
function NUM-POSITIONAL (L: LIST) return COUNT;

procedure ADD-POSITIONAL (L: in out LIST;
ITEM: in LIST);

procedure ADD-POSITIONAL (L: in out LIST;
ITEM: in STRING);

procedure GET-POSITIONAL (L: in LIST;
ITEM: In out LIST;
AT: in POSITIVE-COUNT);

procedure SET-POSITIONAL (L: In out LIST;
ITEM: in LIST.
AT: in POSITIVE-COUNT);

function NUM-NAMED (L: LIST) return COUNT;

3B-62

. - - . . . . . . . . .- _ __ _



r0

Draft CAIS 8-5

procedure ADD-NAMED (L: In out LIST;
KEYWORD: In KEY-STRING;
ITEM: In LIST);

procedure ADD-NAMED (L: In out LIST;
KEYWORO: In KEY-STRING;
ITEM: In STRING);

procedure GET-NAMED (L: In LIST;
ITEM: In out LIST

AT: In KEY-STRING);
procedure GET-NAMED (L In LIST;

ITEM: In out LIST;
AT: In POSITIVE._COUNT);

procedure SET-NAMED (L: In out LIST;
ITEM: In LIST;
AT: In KEY-STRING); 0

procedure SET-NAMED (L: In out LIST;
ITEM: In LIST;
AT: out POSITIVE.COUNT);

function KEYWORD (L: in LIST;
AT: In POSITIVE.COUNT)
return KEY-STRING; .0

private
- implementation-dependent

end CAISLISTUTILS;

8.2.2.2 Package Semantics

type ITEM-KIND Is (LIST, IDENTIFIER, NUMBER, OUOTEDSTRING);

Each item is recognizable as a list, identifier, number, or quoted-string.

procedure INIT.LIST (L: In out LIST);

Creates a null LIST.

procedure FREE-..LIST (L: In out LIST);

Frees a LIST.

function IS-EMPTY (L: In LIST) return BOOLEAN;

Returns TRUE if the list is an empty LIST.

function KIND (L: in LIST) return ITEM-KIND;

Returns ITEM-KIND of LISTITEM.KIND is LIST for empty LIST. •

function OUOTED.STRING (L: In LIST) return STRING;
function IDENTIFIER (L: In LIST) reurn STRING;
function NUMBER (L: in LIST) return INTEGER;

Converts from a LIST according to the ITEM-KIND.

38..3

- ~ a .. a.."_ .- -. wr-'a V



8-6 Draft CAIS

procedure TOLISTOUOTED (L: In out LIST; FROM: STRING);

procedure TO-LIST (L: In out LIST; FROM: STRING);
procedure TO-LIST (L: In out LIST; FROM: INTEGER);

Converts to a LIST according to the ITEM-KIND.

procedure SET (L: In out LIST; VALUE: in LIST);

Sets the LIST L to the given VALUE.

function NUM-POSITIONAL(L: LIST) return COUNT;

Returns COUNT of positional components (i.e., those without the "KEYWORD = > part).

procedure ADD-POSITIONAL (L: In out LIST;
ITEM: In LIST);

procedure ADD-POSITIONAL (L: In out LIST;
ITEM: in STRING);

Adds another ITEM to the end of the LIST of positional components.

procedure GET-POSITIONAL (L: in LIST;
ITEM: In out LIST;
AT: in POSITIVE-COUNT);

Retrieves ITEM at specified position of LIST. Returns empty LIST if AT > NUM.POSITONAL(L).

procedure SET-POSITIONAL (L: In out LIST; -

ITEM in LIST
AT: in POSITIVE.COUNT);

Sets VALUE at specified position of LIST to the given ITEM.

function NUM-NAMED (L: LIST) return COUNT;

Returns count of named components (i.e., those with the "KEYWORD =," part).

procedure ADD-NAMED (L: in out LIST;
KEYWORD: In KEY-STRING;
ITEM: in LIST);

procedure ADD-NAMED (L: In out LIST;
KEYWORD: in KEY-STRING;
ITEM: In STRING);

Adds another named ITEM to LIST. An exception is generated if an ITEM with the given KEYWORD already exists within LIST.

procedure GET-NAMED (L: In LIST;
ITEM: in out LIST;
AT: In KEY__STRING);

procedure GET-NAMED (L: in LIST;
ITEM: in out LIST;
AT: In POSITIVE.COUNT);

Gets the named ITEM at the given KEYWORD or POSITIVE-COUNT; returns empty LIST if the ITEM is not found.

3B-64

= ° . . . ' l - e . - o - . ., , - . , . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... . .. . .. . . . . .



Draft CAIS 8-7

procedure SET-..NAMED (L: In out LIST;
ITEM: In LIST;
AT: in KEY....STRING);

procedure SET-..NAMED (L:. In out UIST;
ITEM: In LIST;
AT:. In PosmTVE...COUNT

Sets the named component at the given KEY-..STRING or POSITIVE-..COUNT to the given ITEM. ..

function KEYWORD (L: In LIST;
AT: In POSmTVL..COUNT)
return KEY-..STRING;

* Returns the KEYWORD of the specified named Item.

8 .2.3 Package CAIS-..HELP-..UTILS -

This package provides standard support for help facilities. .

{TSDJ

8.3 PRAGMATICS

*a. STANDARD The CAtS places certain requirements on the pre-defined
types available. In particular, a conforming implementation
must support some integer type with at leas the range -32767
to 32767.

b. SYSTEM The CAIS places certain requirements on the machine
parameters. In particular. a conforming implementation must
have MIN..JNT = -32767 and MAX-..INT = 32767.

C. CAIS-TEXT-.UTILS A conforming implementation must support strings of at least
32767 characters in length.

38-65



APPENDIX A
NOTES AND EXPLANATIONS

A.1 INTRODUCTION -

This appendix is provided to give the reader a perspective of the context in which the CAIS is expected to function and
some of the design considerations included during the CIS generation process. While Version 1.1 of the CAIS is directed
toward the Do. AE and ALS developments, the goat of future versions of the CAIS is to provide a standard for Do. APSEs.

A.1.1 BACKGROUND

Version 1.1 of the CASS is predicated on tour premises:

1) the CAIS will be implementable on the AlE
2) the CAIS will be implementable on the ALS
3) the CAIS will be implementable on a bare machine
4) the CAIS will be compatible with modern operating systems

The CAIS as described in Version 1.1 has strived to retain these perspectives while establishing a sufficiently flexible
structure that can be evolved into a Version 2.0 document. This structure is believed to be flexible enough to provide
CAIS implementors considerable amplitude in selecting specific approaches for actual implementations. Interference
with implementation strategies has been avoided.

A.2 CONTEXT

The CAIS applies to Ada Programming Support Environments [STONEMAN] which are to become the basic software
development environments for DoD development programs. Those Ada programs that are used in support of software
development are defined as tools. This includes the spectrum of support software from project management through , "
code development, configuration management and life-cycle support. Tools are not restricted to only those software -

items normally associated with program generation such as editors, compilers, debuggers, and linker-loaders. Those
tools that are composed of a number of independent but inter-related programs (such as a debugger which is related
to a specific compiler) are classed as toolsets. In this document the terms tool and toolset are used interchangeability.

Since the goal of the CAIS is to promote interoperability and transportability of Ada software across DoD APSEs, the
following definitions of these terms are provided. Interoperability is defined as "the ability of APSEs to exchange data
base objects and their relationships in forms usable by tools and user programs without conversion." Transportability
of an APSE tool is defined as "the ability of the tool to be installed on a different KAPSE; the tool must perform with
the same functionality in both APSEs. Transportability is measured in the degree to which this installation can be ac-
complished without reprogramming. Portability and transferability are commonly used synonymously." [Reference: KAPSE
Interface Team: Public Report, Volume I, 1 April 1982; p. Cli.

3B-66

2.. . ...... .. .

............................................ .. °



. r r .°- ..- r •

APPENDIX B
PROVIDING DIRECTORY STRUCTURES USING A TRANSITIONAL SUBSET OF THE CAIS

5.1 INTRODUCTION

While conformance with the CAIS will be measured on a package-by-package basis, it is sometimes not possible to
implement one package without the provision of another. This is especially true for packages depending on the package
CAISNODE.MANAGEMENT. In the interest of the availability of CAIS implementations within a very short time frame,
a transitional subset of the node-related packages are defined in this appendix. They include the most important inter.
faces that are vital for the majority of simple tools. This subset restricts the model of the file organization to the equivalent
of a hierarchical tree-oriented file-system. Leaves in the tree are file nodes; all other nodes are structural nodes representing
directories or they are process nodes.

In order to prevent incompatibilities with more sophisticated CAIS implementations, the syntactic appearance and semantic
meaning of calls on CAIS interfaces have been kept upward compatible, rather than providing more appropriate mnemonic
names for the subprograms. (The latter is left to a trivial renaming package outside the CAIS subset.) Hence, any pro-
gram executing properly on an implementation of the CAIS subset will also execute properly on any implementation -
of the CAIS (but obviously not vice-versa).

An implementator of these transitional subset packages may choose to use different implementation strategies than

required for the provision of the full functionality of these packages as defined in the CAIS.

The subset is obtained by imposing restrictions and adjusting package specifications as follows:

1. Pathnames are allowed to contain only path elements referring to the "DOT"-relation using the ab- . - -
breviated form . "or to "'USER" and "'CURRENT-USER" as predefined optional prefixes to
pathnames.

2. In all subprograms of the node-related packages CAISNODE.MANAGEMENT and
CAIS-STRUCTURAL.NODES any occurrence of a formal parameter of type RELATION-NAME
is deleted. The implementation of these subprograms must default the RELATION-NAME to "DOT".

3. The formal parameters RELATION and PRIMARY-ONLY of the subprograms
CAIS.NODE.MANAGEMENT.ITERATE are deleted. The implementation of the subprograms must
default the RELATION to "DOT".

4. The following subprograms of the package CAIS.NODEMANAGEMENT are defined to raise the
USE-ERROR exception:

PRIMARY-RELATION
PATH-KEY
PATH-RELATION
LINK
UNLINK

5. The following subprograms of the package CAIS.STRUCTURAL-NODE are defined to raise the

USE-ERROR exception:

CREATE-NODE with formal parameter "RELATION" (two instances)

Bearing these restrictions in mind, the specified semantics for all subprograms of the packages involved describe those
operations useful in particular for handling directories (structural nodes) of a conventional tree-structured file system
and fies contained in such directories. Pathnames have the conventional form of identifiers separated by dots, except
for the optional prefix path elements " 'USER "and "'CURRENT.USER".

3B-67

97

°..c -" *o-- .°°



B-2 Drft CAI$ S

B.1.1 Package Semantics

NOTE: These semantics do not include the procedures and functions which are defined to raise USE-ERROR In the
above list.

a) CAIS-STRUCTURAL.NODES

procedure CREATENODE(NAME: In NAME-STRING;
FORM: In FORM-STRING =

procedure CREATE-NODE(NODE: In out NODE-TYPE;
NAME: In NAMLSTRING;
FORM: In FORM-STRING =

Creates a directory (structural node) with its "DOT" relationship and parent node implied by the NAME argument.

b) CAIS.NODE.MANAGEMENT

The key of a file or directory is the relationship key of the last element of its pathname. Many operations are allowed
to take either a pathname, or a parent node (i.e., a directory) and a key. The keys of process nodes, file nodes or sub-
directories in a directory must be mutually distinct.

procedure OPEN (NODE: In out NODE-TYPE;
NAME: In NAME-STRING:

procedure OPEN (NODE: in out NODE-TYPE;
BASE: in NODE-TYPE;
KEY: In RELATIONSHIP-KEY : =

Opens the designated file node, process node or directory and returns an open handle on the designated file
node, process node or directory node. The NAME-ERROR exception will be raised if the file, process or direc-
tory does not exist.

procedure CLOSE(NODE: in out NODE-TYPE);

Severs any association between the internal node handle and an external node and releases any associated lock. This
must be done before another OPEN can be done using the same NODE-TYPE variable.

function IS-OPEN (NODE: in NODE-TYPE) return BOOLEAN;

Returns TRUE if the NODE is open.

function KIND (NODE: in NODE-TYPE) return CAIS-NODE-DEFS.FILE-KIND;

Returns the "kind" of a node, either FILE, PROCESS, STRUCTURAL or DEVICE. Structural nodes are directories.

function PRIMARY.NAME(NODE: in NODE-TJYPE) return NAME-STRING;

Returns the full path name to the file node, process node, or directory.

function PRIMARY-KEY (NODE: in NODE-TYPE) return RELATIONSHIP-KEY;

Return the last relationship key of the pathname to the file node, process node or directory. If the NODE is a top-level
directory, the key is the user name.

procedure GET-PARENT(NODE: In NODE-TYPE;
PARENT: In out NODE-TYPE);

Returns the parent process or directory. Generates an exception if NODE is a top-level directory.

38-68

..........................



Draft CAIS B-3

procedure COPY-NODE (FROM: in NODE-TYPE;
TO: In NAME....STRING);Iprocedure COPY-.NODE (FROM: In NODE-TYPE;
TO-..BASE: In NODE-..TYPE;
TO-,.KEY: In RELATIONSHIP-KEY

*Copies a fife. It is an error (KIND-...ERROR) if the node referenced is a process node or a device node or directory
node(structural node).

*procedure COPY-JTREE (FROM: In NODE....TYPE; 1
TO: In NAME-STRING);

procedure COPY-T3REE (FROM: In NODE-T.YPE;
TO-...BASE: In NODE-..TYPE;
TO-...KEY: in RELATIONSHIP-KEY =

Copies a directory including its files. It is an error (KIND-...ERROR) if any node referenced is a process node or a device
node. ..

procedure RENAME(NODE: In NODE-TYJPE;
NEWNAME: in NAME-TRING).

procedure RENAME(NODE: In NODE-T3YPE;
NEWBASE: In NODE...TVPE;
NEWKEY: in RELATIONSHIP-K.EY :="
NEWRELATION: in RELATION-..NAME:= ."

*Allows the renaming of file nodes, process nodes, or directories using a node handle for the renamed node and, in the
second case, a node handle on the parent directory or process node. RENAME raises the exception USE-..ERROR
if a node already exists with the. new-name.

B ~~procedure DELETE-...NODE (NODE: In out NODE....TYPE);
procedure DELETE-.NODE (NAME: in NAME-STRING);

Deletes the relationships between a file or process foode and its parent and deletes the node itself. This is only legal
if the node has no children. Deletes a file, empty directory or a process with no descendants as well as the associated node.

* procedure DELETE-TREE (NODE: in out NODE-T.YPE);

DELETE-..TREE deletes a node and recursively deletes all its descendants.

type NODE..JTERATOR is private;
subtype RELATIONSHIP-..KEY-PATTERN is RELATIONSHIP-KjEY.

RELATIONSHIP. -.KEY-PATTERNs follow the syntax of relationship keys, except that a "?will match any single
character and a -- will match any string of characters.

procedure ITERATE(ITERATOR: out NODE-JTERATOR;
NODE: in NODE-TJYPE;
KIND: In NODE...KIND;
KEY: in RELATIONSHIP-..KEY-P.ATTERN:

functon MORE (ITERAlOR: In NODE-JTERATOR) return BOOLEAN;

procedure GET...NEXT(ITERATOR: In out NODE-I.TERATOR;
NEXT-NODE: in out NODE..3YPE);

These three routines iterate through those nodes referred to from the given NODE, via "DOT"-relationships, that have ..-

keys satisfying the specified patterns and are of the KIND specified. .

3B-69



. - -, o . - - - -, - .- - - . • . .r - .r - r r r - .- - - - - - z - ,- -- -w. . " fl7 . - -- , --.l -

B-4 Draft CAIS

The nodes are returned in ASCII lexicographical order by relationship KEY. The key is available from the function
PRIMARY-_KEY (see above).

procedure SET.CURRENTNODE(NAME: In NAMESTRING);

procedure SET.CURRENT.NODE(NODE: In NODETYPE);

Specifies NODE/NAME as the current directory.

procedure GET-CURRENTNODE(NODE: In out NODE.TYPE);

Associates NODE with the current directory.

function IS.SAME(NAME1: in NAME-STRING;
NAME2: In NAME-STRING)

return BOOLEAN;
function IS.SAME(NODE1: in NODE-TYPE

NODE2: in NOTE-TYPE)
return BOOLEAN;

3B- 70

............................................................. .



APPENDIX C
CAlS IMPLEMENTABILITY

* C.1 INTRODUCTION

The specification of the CAtS has been separated into multiple packages to simplify initial or partial implementations.
The rules for Ada limited private types can interfere with this kind of separation. This appendix outlines several implemen-
tation approaches which are consistent with both the rules of the Ada language and the rules for CAlS conformance.
This appendix will ultimately be superceded by a CAIS implemator's guide.

(a) NESTED GENERIC SUSPACKAGES IMPLEMENTATION .

This implementation strategy seeks to minimize visibility of the limited private types of CAIS....NODE....DEFS by using
these private types strictly as intended by Ada. All operations on the private types are encapsulated within the package
defining CAIS...NODE...DEFS. A sketch of this is as follows:

package CAtS is
-rtype definitions of CAIS-. NODE....-DEFS

generic
package NODE-DEFS Is

-subtype Declarations
and NODE. .°•DEFS;

generic.S _

package NODE-MANAGEMENT Is
-specifications of Section 3.5
end NODE-MANAGEMENT;

generic
package STRUCTURAL-NODES is
-specifications of Section 4.1
end STRUCTURAL-NODES;
tiand so forth for all of the CAIS packages

T end CAIS;

with CAIS;

package CAISNODe DEFS Is new CAIS.NODES usgDEFS;

with CAIS;

package CAISnNODfMANAGEMENT Is nEw CAIS.NODE.MANAGEMENT;

for each of the OAS packages -

This organization, while unwieldy, allows the CAlS packages specified in this document to be utilized in the organization
provided in earlier document sections.

*(b) LIMITED RECORD TYPE IMPLEMENTATION

This sketch shows how an oipementor might separat the limited private definitions and operations on the limited private
typos into a separate Isolated package. The use lible package structure remains the same, except that NODE-TYPE .

Is defined as a limited record type, rather than limited private.

38-71

7 .. - . ..

4 -. - .. . -



C-2 Draft CAlS

package CAIS-PRIVATE is
type NODE-.TYPE is limited private;
*... and other types with limited private visibility needs(

- The remainder of this package specification is
- implementation specific, and not specified as part
- of the CAIS. No tool or APSE application should
- make use of this package; it is solely for the
- use for implementation of other CAIS packages.

end CAIS-PRIVATE;

with CAIS-PRIVATE;
package CAIS-NCDE..DEFS Is

type NODE-..TYPE is
record

INTERNALS: CAIS-PRIVATE.NODE-.TYPE;
end record;

*... and the rest of CAIS..NODE...DEFS from 3.1

The implementation of the other CAlS packages (i.e., the package bodies) may now use the underlying subprograms
of CAIS-PRIVATE to manipulate the INTERNALS of NODE-...TYPE. This provides an implementation which is safe.
so long as no tool or applications program "withs" CAIS...PRIVATE.

A typical CAlS implementation package body may have the following appearance:

with CAIS....RIVATE;
package body CAIS-NODE-MANAGEMENT is

procedure OPEN(NODE: in out NODEIITYPE*.
NAME: in NAME-...STRING) is

begin
CAIS-PRIVATE.OPEN(NODE.INTERNALS, NAME);

end OPEN-,

end CAIS-NODE-MANAGEMENT:

* Wc NON-ADA IMPLEMENTATION

If the package bodies are implemented in a language other than Ada, then the problems of limited private types may
be absent. The implementation may have a structure dictated by the facilities of an underlying operating system, by

* the facilities of a microcoded system and by the processor architecture itself.

3B- 72



Postscript Submission of Comments

For submission of comments on this CAIS Version 1.1, we would appreciate them being sent by Arpanet to the address

CAIS-COMMENT at ECLB

If you do not have Arpanet access, please send the comments by mail

Mr. Jack Foidl
TRW SYSTEMS
3420 Kenyon St.
Suite 202
San Diego, CA 92110

For mail comments, it will assist us if you are able to send them on 8-inch single-sided single-density DEC format diskette- .
but even if you can manage this, please also send us a paper copy, in case of problems with reading the diskette.

All comments are sorted and processed mechanically in order to simplify their analysis and to facilitate giving them pro-
per consideration. To aid this process you are kindly requested to precede each comment with a three line header

'section ...

version 1983

topic ...
!rationale

The section line includes the section number, your name or affiliation (or both), and the date in ISO standard form (year-
month-day). As an example, here is the section line of comment 1194 on a previous version: -

!section 03.02.01(12)D.Taffs 82-04-26

The version line, fur comments on the current document, should only contain "Iversion 1983". Its purpose is to distinguish
comments that refer to different versions.

The topic line should contain a one line summary of the comment. This line is essential, and you are kindly asked to ..
avoid topics such as "Typo" or "Editorial comment" which will not convey any information when printed in a table of
contents. As an example of an informative topic line, consider:

Itopic FILE NODE MANAGEMENT

Note also that nothing prevents the topic line from including all the information of a comment, as in the following topic line:

topic Insert: "...are Iimplicitly) defined by a subtype declaration"

The rationale line should contain some reasoning for your comment.

As a final example here is a complete comment:

!section 03.02.01(12)D.Taffs 82-04-26
Iversion 1983
!topic FILE NODE MANAGEMENT

Change component to subcomponent in the last sentence.

Irationale

Otherwise the statement is inconsistent with the defined use of subcomponent in 3.3. which
says that subcomponents are excluded when the term component Is used instead of
subcomponent.

3B-73

..---.... '-....-..
. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .



OFFICE OF THE UNDER SECRETARY OF DEFENSE

WASHINGTON. D.C. 203010

RESEARCH AND... ,-

ENGINEERING

MEMORANDUM FOR TIM COMMANDER, U.*S.* ARMY MATERIEL DEVELOPMENT
AND READINESS COMMAND C DRCDE- SB)
THE CHIEF OF NAVAL MATERIEL (MAT-OSY)
THE COMMANDER, AIR FORCE SYSTEMS COMMAND
(ASFC/ALR)

*SUBJECT: CKIS Planning Meeting

On 16 November 1983, we held a CAIS Tri-Service
planning meeting at the AJPO. Attachment 1 is my Memorandum

* for the Record of the meeting. Since we all agreed that the -

establishment of the CAIS was our goal, but that closeS
* coordination would be required, I felt that this Memorandum
* for the Record should be agreed to by the four of us.

Please review Attachment 1 and provide any comments to.
me by 9 December, so I can revise it. in order to expedite-
our agreement on the results, I would encourage informal
responses to myself as soon as you have them. if you have
additional things that you would like to see in it, please
provide them also.

Because of the importance of the CAIS to the Ada
program, I would like to work directly with you to make sure
that we all agree to the results of this meeting.

Ada Joint Program Office

cc: HQUSAF/RDST/RDPV
N1c (832)

XC-1



MEMORA6NDUM FOR THE RECORD

DATE: November 16, 1983

FROM: Robert Mathis

SUBJECTt CAIS TRI-SERVICE PLANNING MEETING

ATTENDEES: Dr. Robert Mathis -- Director, AJPO
COL Kenneth Nidiffer -- APSC, AF Ada PM
COL Harold Archibald -- DARCOM, Army Ada PH4
CAPT Dave Boslaugh -- NAVMAT, Navy Ada PM
LTCOL Vance Mall -- Director, STARS
Dr. John Kramer -- IDA
Mr. Jim Hess -- DARCOM
Mr. Owen McOmber -- NAVMAT
MAJ Al Kopp -- AFRDST -
LCDR Brian Schaar -- Navy Deputy AJPO -

CDR Jim Stewart -- PMS-408
Mr. Bob Converse -- PMS-408
Mr. Pete Fonash -- DARCOM
Ms. Carol Morgan -- STARS Navy Deputy
Dr. Sam Redwine -- MITRE
LTCOL Dick Stanley -- STARS Army Deputy
Mr. Bill Wilder -- SofTech

DISCUSSION ITEMS:

1. Objectives and Overview:

The meeting commenced at 0915. Dr. Mathis welcomed the

group, went over the meeting objectives, KIT background and

objectives, KIT strategy summary, CAISWG composition and the

existing CAIS schedule (Attachment 1, slides 1-5). Jack Kramer

. then briefed the CAIS concerns and CAIS characteristics

(Attachment 1, slides 6 and 7).

XC-2

.: •- -- ** .. . . . • ':.:.:.I



F 0

S

2. Reaffirmation of Support for the Tri-Service MOAt

Dr. Mathis discussed the history of the NOA which has resulted

in the establishment of the KIT under Navy leadership, the KIT's

development of the CAIS, the quarterly trn-service, status

reports on the KIT program, and the fairly strong tri-Service•

support for the CAIS effort expressed at the Dallas Tri-Service

Review. The result of the discussions that followed was a

consensus of positive support for the MOA and CAIS effort, but a

recognition that there were concerns with the proposed schedule

and its impact on the existing and proposed service efforts.

3. CAIS Implementation Concerns:

The Army stated that it cannot change the existing baseline

ALS until after its delivery in January 1985. Upon delivery of

the Oproduction quality" release of the ALS in January 1985,

they would commence upgrading the ALS CAIS equivalent interfaces

to conform to the CAIS if there was a tri-service agreed-to CAIS

standard (MIL-STD) at that time. The Navy stated that they

needed versions of the CAIS in April and November 1984, and a

final standard CAIS document in January 1985 if the CAIS was to

become a part of the MS/N RFP and not impact the existing ALS/-

procurement strategy. All parties agreed that the January 1985

version of the CAIS should be a MIL-STD.

3C-3

.*.. .**. ...*.*.. .. .. .. .. .. .. ... .. . .



4. CAIS Schedule Revision 0

Dr. Mathis then began proposing a revised CAIS development

and standardization schedule based on the original schedule, -

slide 5, and some of the previous discussions. The principal

concerns with the schedule centered around close dependencies

between the CAIS standardization, the krmy MLS development .

schedule, and the Navy MLS/N RFP requirements.

The original schedule called for only a clean-up of Version

1.1 of the CAIS based on the existing review cycle. In January

1984 the development of Version 2 was to commence using Version

1 and the requirements document as a basis for development. The

resulting Version 2 would have become a MIL-STD by January 1986, -

which was too late for Navy use in their MS/N RFP. The first

agreement was to make Version 1 a MIL-STD in January 1985. That : .- '-

document would include all the technical comments provided by

the public review of CAIS Version 1.1, service technical inputs

to be provided by 15 December 1983, and at a minimum those

Version 1.1 deferred items which are interfaces in the MS and

AMX

The second agreement was that Version 2 would not be

started until January 1985. At that time the Version 1 MIL-STD -

would become the baseline from which Version 2 would grow.

Version 2 would address three principal areas: first, Version

1.1 deferred items which were not resolved in the Version 1 MIL- -0•

STDT second, the requirements in the KIT APSE Requirements for

Interoperability and Transportability and Design Criteria for

3C-4

L .. . .



* o ..

the CAIS (R&C) document which were not met in the Version 1 MIL-

STD; and finally those items found necessary as a result of the

production release of the ALS, the development of the AlE, the --

ALS/N contract, and other Implementations of the CAIS MIL-STD .

and tool developments using those interfaces.

5. CAIS MIL-STD Approvals .

It was recognized that CAIS approval, as a MIL-STD will

require active participation on the part of the three services. .

In particular, the December 1984 approval cycle must be

carefully prepared so that all technical and political problems

have been resolved prior to that time. All services agreed that

they must work positively towards establishing the C'IS as a

MIL-Standard which would require identification of the .

appropriate people to work with the KIT chairman to resolve all

technical and program issues prior to Decemer 1984. Each

*" service will have to decide if this is one person or different

ones addresssing the technical and program issues. As the first ,

step in meeting the January 1985 date, the services agreed to

*provide technical comments by 15 December 1983. With respect to

the ALS, a meeting between the Army ALS manager, the KIT _

chairman and several of the CAISWG members was proposed for some

time between 12 and 22 December at Ft Monmouth, Mi. This

meeting woud permit detailed technical comments and concerns to

be discussed so that a plan for their resolution could be

executed in January 1984.
3C-5

.. - .... . . . . . .. ,o".. . . . . . . . . . . . . "
_, -"--,,,.---,.',-,-', ,-.-' -.;; -, ''..,- -... ".-... -. - ...-... .-. ..-.-.. . .. .. .. . .... ... . . .... . ... ...... . ... *. . .. .,,-..



• , -

6. Configuration Control:

During the discussions of the CAIS schedule it was decided

that a close Configuration Management (C4) of the ALS and

coordination with the CAIS development was necessary. After a

brief discussion, there was a general agreement that the scope

of the configuration management should be expanded to include

the AlE and the CAIS at some stage, under the same C group.

The actual mechanics for such a C4 group were not decided. The

Navy suggested that there were existing regulations on how to

conduct such a group, and that these should be followed. There

was some concern that the existing ALS CM joint-service team may

not have a proper charter or be composed of the appropriate

personnel to speak for the services.

7. CAIS Schedule Agreement:

Attachment 1, Slide 8 is the final schedule. All parties

agreed that it nests the needs of the Army, Navy and Air Force,

while proceeding forcefully towards a CAIS MIL-STD.

a. ACTION ITEMS

a. Service PHs will provide a point(s) of contact to work

with the KIT chairman.

3C-6

*. . . . . . . . . . . . . . . . . . . ...-..... ...-....- ........-..-.........-....-......... - ......... ..-.. ,.,... ...- .-...- , , .. .. . .. .. .. ... .....-..

"-,' " ''..: ".- '.',' .":. -- .' -' .'. -*-.- - '..*.. ' - -*,,..-- ".--',_,'' '',_''''.,'.. _',- ''. '° ''. _._"','-" -..-_." " -"- ",-' ' _ -. .".



b. Service P145 agreed to start planning on how they will meet

the January 1985 approval of CMIS as a MIL-STD.

C. The Navy agreed to include the 1985 CAIS I4IL-STD as part of

the ALS/N procurement.

d. The Army agreed to start Implementation of the CAIS MIL-STD

in 1985.

e. All parties agreed to support a Joint Service configuration

* management organization.

3C- 7



LU

LU CC
-, UJ LU 4

LU q

0o
_ z 4A %A

LU'02
LUOnU

~LU 

$A.

IL LU

3C-8

-, .g



umS

00

>0 0A
0 0

'in 
z

f4 LL

0%P
F -

.6

0 
0A

LU i-0

z 
>-

0U 
Ui -U

I -
LL ,

I- ~LU A

LU '-? %A~

LU L I U I

>L L 0- ow
2LU

U

* 0 0 0

3C-9



RD-A147 648 KERNEL ADA PRiOGRAMMING SUPPORT ENVIRONMENT (KAPSE) 3/5
INTERFACE TERM PUBLIC REPORT VOLUME 4(U) NAVAL OCEAN
SYSTEMS CENTER SRN DIEGO CA P OBERNDORF 30 APR 84

UNCLRssIF IED NOSC/TD -- VO F/G 9/2 L

Ehmmmmmhhhl
EEmhmhohmhhmhI
EohohmhhmhmhhI
immomhmhhhhl

mEEomhEEmhEEI



- -ill 2.5

11111.5 L lil

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAJ Of StANOAOS -1.963-A

... ,.., ..:.,..,~~~~~~ - .. 4 ..... C. . t-.... . ., ,~A ..- . .. .. -.. ,.. ... .. - ...... . .- . ... . ..... . ... °......-.-.....4..-



LU

LU LU I LU

IU LU
2 0 V<0

0u~ >0 Z
z P z 0 0 0

3C-1 0



L -Z C I-to Lu t; #

LU L~ Z 0to 0LULo Lu L
r. LU LZ 0 A

L**O at: z L,:iZt o 6 6 0L" 
_ 4

LU,

oon
$A Lu

_ 0Lu L"
W6 at -4 a
Cie z uo U 0

ac Luj*j t6

LLu

4A LAW

3C-1 I



en

enwn

$A -L 0

_u >. Lm
4A 0.

z 4, UO

LU c

"IIA

I-- Z -

Z Lnq
o o ~ 7A 0
c . > -cc cr IA

wU LU LLI 0 v> w w wUC
> c.> VU LU> > > U

II-v1 - IuMLI-

3C-12



z
LuU

U LU

z> V
zz

0w0

LU ~LU

U 21

3C-13



IA
LU

LU

0 2 u

0 4c

mlLU
UU LU

2 a. 4g
LU LAW

IIL
UU I-LA2 1

tI( 0 $A

UrnA

UU CL

a. LU CC0

U I'm Nis

%A OC 0 LA
LU ~ ~ 2>

IAI

LULUW UJ LU

%A LU LUi Z C

3C-14



V0.

LU VI

Wn LU I
do WU V- 4 4 4L4I.

-~2 CA ,. 4
4AV m I- U

%A a L eg cc * a c Ge .
IL $A 0 SU MA 0

~fLU .5> z

2 _

LLU

~LU

0 0

>~>VL >>OA
IA N f" >

Z Z2
.... * . *. * S

z z LA z z 0zC01_

o o. 0 0 IA0 C



RAC INTRODUCTION April 1084

Attached following is the version of "DoD Requirements and Design

Criteria for the Common APSE Interface Set (CAIS)" document (informally known

as the "RAC") approved at the April KIT/KITIA meeting for public release. A

large majority (over 70% in each case) of KIT/KITIA members voted approval,
on a section-by-section vote, of the following resolution:

"RESOLVED: This section of the RAC substantially represents the

correct set of requirements and design criteria for the CAIS, and

shall be placed under configuration management and published in the
Public Report."

Two things need to be carefully explained concerning this approval of the

draft document:

First, two important sections (4 - "Object Management Support", and 6 - "I/0

and Device Control Facilities") are TBD in this version, meaning that no

first baseline version of either section has been submitted for KIT/KITIA vote.

Second, many KIT/KITIA members submitted non-major comments with their
positive votes (the positive vote was actually titled "Approve with
comments"). Many editorial changes (mainly word-smithing) will be made to

virtually every paragraph of the document. Additionally, ensuing working

group discussions at the April meeting have already led to the formulation of i":' .- -:

significant rewrites of sections 5 ("Process Facilities") and 7
("Interoperability and Transportability") as summarized below:

5: Renamed "Program Execution Facilities"; definitions added for

undefined terms; significant reorganization of section without major
change to conceptual requirements. Additionally, there is ongoing a _

re-examination of the concept of "process", especially in the areas of

data transfer and synchronization between processes, and the level

at which those requirements should be stated.

7: Elimination by merging all requirements into other sections with related

requirements and criteria.

3D-1

-. .......-..-.- _-



Therefore, although this draft document is now a configuration-controlled
product of the KIT/KITIA and changes to approved sections require formal

votes of KIT/KITIA, it is certain that such votes will occur at meetings in

July and October of 1984. Initial approvals of sections 4 and 6 are also -

anticipated at these meetings. KIT/KITIA regard it as a normal process that

this document will continue to slowly evolve for a period of years.

In summary, the reader should appreciate that the sense of KIT/KITIA was to
expeditiously make available for public examination a version of CAIS
requirements and design criteria which confidently represents major

directions of KIT/KITIA thinking, despite the fact that at this point in time m

the document is volatile on many lower level details. Public reviewers

who desire to submit detailed critiques of this document are encouraged to

contact the KIT chairman or the support contractor for the latest approved

version of the document.

Prepared by: Hal Hart (TRW), Chairman

F Requirements and Criteria Working Group (RACWG)

Approved by: Patricia Oberndorf (NOSC), Chairman

KAPSE Interface Team (KIT)

3D-2

- ' . . . .

3D~ 2 " ...._________



WO0R KI NG P AP ER

NO0T A P P ROV ED

DoD

Requirements

and

Design Criteria

for the Common APSE Interface Set

23-Mar-i 984

THIS IS AN UNAPPROVED DRAFT AND SUBJECT TO CHANGE.
DO NOT SPECIFY OR CLAIM CONFORMANCE TO THIS DOCUMENT.

[THIS VERSION IS FOR DISTRIBUTION TO laT ITIA ONLY.]

3D-3



PRELIMINARY - SUBJECT TO CHANGE NOT APPROVED
DoD Requirements & Criteria for the CAIS 23-Mar-1984

TABLE OF CONTENTS

Page

PREFACE ii.

1. INTRODUCTION 1

2. GENERAL DESIGN OBJECTIVES 3

3. GENERAL SYNTAX AND SEMANTICS 5 -

4. OBJECT MANAGEMENT SUPPORT 7 (TED)

5. PROCESS FACILITIES 8

6. INPUT/OUTPUT AND DEVICE CONTROL FACILITIES ii (TBD)

7. INTEROPERABILITY AND TRANSPORTABILITY i"

3D.

3D-4 A

• ... " .'°- o.



PRELIMINARY - SUBJECT TO CHANGE NOT APPROVED
DoD Requirements & Criteria for the CAIS 23-Mar-1984

0
PREFACE

The KAPSE Interface Team (KIT), and its companion
Industry-Academia team (KITIA), were formed by a Memorandum of
Agreement (MOA) signed by the three services and the
Undersecretary of Defense in January, 1982. Their purpose is
to contribute to the achievement of Interoperability of
applications databases and Transportability of software
development tools ("IaT"). These are important economic
objectives, identified at the outset of the DoD common
language initiative in the mid-1970"s and now acknowledged to
require an integrated Ada Programming Support Environment 0
(APSE), in addition to the standard language Ada, for
fulfillment. The core of the KIT/KITIA strategy to fulfill
I&T objectives is to define a standard set of Ada Programming
Support Environment (APSE) interfaces ("CAIS" for "Common APSE
Interface Set") to which all Ada-related tools can be written,
thus assuring the ability to share tools and databases
between conforming Ada Programming Support Environments
(APSEs). Note that a large number of these interfaces are at
the Kernel APSE (KAPSE) level. This document establishes
requirements and design objectives (called "criteria") on the
definition of a CAIS.

This document is related to the DoD "Stoneman" Requirements
for Ada Programming Support Environments in identifying and
refining the derived requirements which are imposed upon a
CAIS and which effect the I&T-related objectives. Additional
influences on this document were the DoD "Steelman"
Requirements for High Order Computer Programming Languages and
the several sets of ANSI "OSCRL" requirements and design
objectives for Operating System Command and Response
Languages.

This version of the document is NOT APPROVED and is circulated
for review and comment; it has been partially reviewed by KIT
and KITIA, but is currently incomplete and has not received
final approval. Please address all comments in duplicate via
ARPANET to "EHalHrt@ECLB" and "TRWIT(ECLB.

A form for grading this document, paragraph by paragraph, and
according to given statements of merit, is contained in
(halhart>RAC.EVAL at ECLB.

3D-5

.- -• o . •

..................................



PRELIMINARY - SUBJECT TO CHANG NOT APPROVED
DoD Requirements & Criteria for the CAIS 23-Mar-1984

1. INTRODUCTION

IA. Scope. This document provides the Department of
Defense's requirements and design criteria for the definition
and specification of a Common APSE Interface Set (CAIS) for
Ada Programming Support Environments (APSEs).

1B. Terminology. The precise and consistent use of terms has
been attempted throughout the document.

Many potentially ambiguous terms have been used in the
document. Most are defined in the Glossary of KIT/KITIA
terminology.

Additionally, the following verbs and verb phrases have been
used consistently throughout the document to indicate where
and to what degree individual constraints apply. Any sentence
not containing one of the following verbs or verb phrases is a
definition, explanation or comment.

shall" indicates a requirement on the definition
of the CAIS; sometimes "shall" is followed
by "provide" or "support," in which cases
the following two definitions supercede

this one.

shall provide" indicates a requirement for the CAIS to
provide interface(s) with prescribed
capabilities.

"shall support" indicates a requirement for the CAIS to
provide interface(s) with prescribed
capabilities or for CAIS definers to
demonstrate that the capability may be
constructed from CAIS interfaces.

"should" indicates a desired goal but one for which .
there is no objective test.

iC. Relationship to CAIS Specifications and Implementations.
This document specifies functional capabilities which are to
be provided in the semantics of a CAIS specification and are
therefore to be provided by conforming CAIS implementations.
In general, the specifications of software fulfilling those
capabilities (and decisions about including or not including
CAIS interfaces for certain capabilities as suggested by the
"shall support" definition in the previous section) are
delegated to the CAIS definers. If a particular facility
specified in the CAIS is independent of other CAIS facilities,
then a CAIS implementor may elect to reuse CAIS facilities to
provide the particular specified. facility, thereby achieving a
"layered implementation" of the CAIS. Therefore, the

3D-6

........ ........ ........ ........ ...... . . .
. . . - ' ." ." .. .- ,. . _,"_ "- - _. J" . = .. . . .- .' . . ."-,



PRELIMINARY -SUBJECT TO CHANGE NOT APPROVED

DoD Requirements &Criteria for the CAIS 23-Mar-I 984

realization of a specific CAIS implementation is the result of
* intentionally divided decision-making authority among 1) this
*requirements document, 2) CAIS definers, and 3) CAIS

implementors.

3D-7

. . . . . . . .. . . . . . . . . .



PRELIMINARY - SUBJECT TO CHANGE NOT APPROVED
DoD Requirements & Criteria for the CAIS 23-Mar-1984

2. GENERAL DESIGN OBJECTIVES

2A. Scope of the CAIS. The CAIS shall consist of the
interfaces necessary and sufficient to support the use of -

APSEs throughout the lifecycle, and to promote I&T among
APSEs. The CAIS should be broad enough to support wide sets
of tools and classes of projects. The CAIS is not required to
provide all general operating system capabilities.

2B. Basic Services. The CAIS should provide simple-to-use
mechanisms for achieving common, simple actions. Features
which support less frequently used tool needs should be given
secondary consideration.

2C. Implementability. The CAIS specification shall be
machine independent and implementation independent. The CAIS
shall be implementable on bare marhines and on machines with
any of a variety of operating systems. The CAIS shall contain
only interfaces which provide facilities which have been
demonstrated in existing operating systems, kernels, or
command processors. CAIS features should be chosen to have a "
simple and efficient implementation In many object machines,
to avoid execution costs for unneeded generality, and to
ensure that unused portions of a CAIS implementation will not
add to execution costs of a non-using tool. The measures of
the efficiency criterion are, primarily, minimum interactive
response time for APSE tools and, secondarily, consumption of
tool-chargeable resources.

2D. Modularity. Interfaces should be designed ip a modular
fashion such that they may be understood in isolation and such
that there are no hidden interactions between interfaces.
This permits a tool writer to employ a subset of the CAIS.

I
2E. Extensibility. The design of the CAIS should facilitate
development and use of portable extensions of the CAIS; i.e., .-

CAIS interfaces should be reusable so that they can be
combined to create new interfaces and facilities which are
also portable.

2F. Technology Compatibility. The CAIS shall adopt existing
standards where applicable. For example, recognized standards
for device characteristics are provided by ANSI, ISO, IEEE,
and DoD.

2G. Consistency. TThe design of the CAIS should minimize the
number of underlying concepts. It should have few special
cases and should consist of features that are individually
simple. These objectives are not to be pursued to the extreme

3D-8

• -. . o . ........................................ ....



PRELIMINARY - SUBJECT TO CHAN(Z NOT APPROVED
DoD Requiremrats & Criteria for the CAIS 23-Mar-1984

of providing inconvenient mechanisms for the expression of
some common, reasonable actions.

2H. Security. The CAIS shall be implementable as a secure
system that fulfills the requirements for a Class (B2) system
in the DoD document titled "Trusted Computer System Evaluation

Criteria." The CAIS shall be designed to mediate all tool
access to underlying system services (i.e., no "by-passing"
the conforming CAIS implementation is necessary to implement

any APSE function). The CAIS should accommodate
implementations that coexist with (without compromising) and .
operate within a variety of security mechanisms.

3D-9

.......................................................

...........-.~..-...... ........ •..... .... ..... ....



7w

PRELIMINARY - SUBJECT TO CHANGE NOT APPROVED

DoD Requirements & Criteria for the CAIS 23-Mar-1984

o~ j
3. GENERAL SYNTAX AND SEMANTICS

3.1. Syntax

3.1A. General Syntax. The syntax of the CAIS shall be
expressed as Ada package specifications. The syntax of the
CAIS shall conform to the character set as defined by the Ada
standard (section 2.1 of ANSI/IL-STD-1815A).

3.1B. Uniformity. The CAIS should employ uniform syntactic
conventions and should not provide several notations for the
same concept. CAIS syntax issues (including, at least, limits
on name lengths, abbreviation styles, other naming
conventions, relative ordering of input and output parameters,
etc.) should be resolved in a uniform and integrated manner
for the whole CAIS.

3.1C. Name Selection. The CAIS should avoid coining new
words (literals or identifiers) and should avoid using words
in an unconventional sense. Ada identifiers (names) defined
by the CAIS should be natural language words or industry
accepted terms whenever possible. The CAIS should define Ada
identifiers which are visually distinct and not easily --
confused (including, at least, that the CAIS should avoid
defining two Ada identifiers that are only a 2-character
transposition away from being identical). The CAIS should use
the same name everywhere in the interface set, and not its
possible synonyms, when the same meaning is intended.

3.1D. Pragmatics. The CAIS should impose only those .

restrictive rules, constraints, or anomalies required to
achieve I&T. The CAIS specification shall enumerate all
instances of syntactic constraint setting which are deferred
to the implementor. CAIS implementors will be required to
provide the complete specifications of all syntactic
restrictions imposed by their CAIS implementations.

3D--10

...............................................................

...................................



.

PRELIMINARY - SUBJECT TO CHANGE NOT APPROVED
DoD Requirements & Criteria for the CAIS 23-Mar-1984

3.2. Semantics

3.2A. General Semantics. The CAIS shall be completely and
unambiguously defined. The specification of semantics should
be both precise and understandable. The semantic
specification of each CAIS interface shall include precise
statement of assumption (including execution-time
preconditions for calls)s, effects on global data and
packages, and interactions with other interfaces.

3.2B. Responses. The CAIS shall provide standard responses
for all interfaces, including a unique, non-null response
(return value or exception) for each type of unsuccessful
completion. All responses returned across CAIS interfaces
shall be defined in an Implementation-independent manner.
Everytime a CAIS interfaces is called under the same
circumstances, it should return the same response. 6

3.2C. Exceptions. All named exceptions raised and propagated
by the CAIS shall be documented. The CAIS specification shall
require CAIS implementations to provide handlers for all
unnamed exceptions raised in the implementations' bodies.

3.2D. Consistency. The description of CAIS semantics should 0
use the same word or phrase everywhere, and not its possible
synonyms, when the same meaning is intended.

3.2E. Cohesiveness. Each CAIS interface should provide only
one function.

3.2F. Pragmatics. The CAIS specification shall enumerate all
aspects of the meanings of CAIS interfaces and facilities
which must be defined by CAIS implementors. CAIS implementors
will be required to provide the complete specifications for
these implementation-defined semantics.

3D-11

................... .... .....- -"

a - -. . . . . .t aot-.. a.co"



*PRELIMINARY -SUBJECT TO CHANGE NOT APPROVED
DoD Requirements &Criteria for the CAIS 23-Mar-i 984

4. OBJECT MANAGEMENT SUPPORT

TBD

3D-12



PRELIMINARY - SUBJECT TO CHANGE NOT APPROVED
DoD Requirements & Criteria for the CAIS 23-Mar-1984

5. PROCESS FACILITIES

Introduction: Informal definitions of "process," "parent,"
"child," "dependent object," etc. ... TBD

5.1. Program Invocation and Control 0

5.1A. Program Invocation. The CAIS shall provide facilities
for a process to invoke any other program which access
controls allow. Such an invocation places the indicated
program into execution creating a child process of the
invoking process. Thus a process is defined to be an 0
individual execution of a program. The invoking process is
termed the parent process. The CAIS shall provide facilities
so that any process may have several child processes executing
concurrently. The CAIS shall support the transfer, with
possible transformation, of object references as part of
process invocation such that the reference received designates ,

the same object in the child process as the original reference
designated in the sender. The CAIS shall provide a means for
uniquely identifying child processes.

5.1B. Privileges. The CAIS shall be designed such that
program invocation and control facilities are not specially
privileged or constrained.

" 5.1C. I/O Redirection. The CAIS shall provide facilities for

a tool to redirect process input and output dynamically at
process invocation.

" 5.1D. Wait Options. The CAIS shall provide the following
wait options when a child process is invoked: the Ada task
enclosing the child process invocation waits for the
coampletion of the child process, and it does not.

.IE. Resource Control. The CAIS shall provide facilities to

allocate, deallocate, and share resources among processes.

5.1F. Interprocess Communication. The CAIS shall provide
facilities for interprocess communication. The CAIS shall
support the transfer, with possible transformation, of object
parameters as part of interprocess communication such that the
parameter received designates the same object in the receiver
as the original parameter designated in the sender.

5.1G. Interrupts. The CAIS shall provide facilities for a
process to interrupt a child process.

5.1H. Process Control. The CAIS shall provide facilities for -
* a process to suspend or resume its child process.

3D-13

7.. . .. . . .

'" ......."" .." ..."" .."".""""'°""": ' " " ' * *'" ' " ' *"' ' """""""" ' " "" ' . '. .... . . . . .: _. i



PRELIMINARY - SUBJECT TO CHANGE NOT APPROVED
DoD Requirements & Criteria for the CAIS 23-Mar-1984

5.2. Process Termination

5.2A. Termination. The CAIS shall provide the facility for a
process to terminate its child processes or itself.

5.2B. Return Values. The CAIS shall provide facilities for
the return of values or status by a process to its parent (or
invoking process).

5.2C. Clean-Up. The CAIS shall assure that the termination
of a process provides for the release or termination of all
dependent objects and resources (including processes).

3D-1 4

. .. .



PRELIMINARY - SUBJECT TO CHANGE NOT APPROVED
DoD Requirements & Criteria for the CAIS 23-Mar-1984

LS

5.3. Process Monitoring

5.3A. Process Identification. The CAIS shall provide

facilities for a tool to determine the hierarchy of program
invocation, subject to access controls and security rights to 0
such information. The CAIS shall provide a facility for a
process to determine the unique name of another process.

5.3B. Process Status. The CAIS shall provide facilities to
determine the status of a process, subject to access controls
and security rights for such information. The CAIS shall 0
provide process status with values sufficient to permit
processes to determine, before issuing process control calls,
if such process control calls will be effective.

5.3C. Monitoring. The CAIS shall provide interfaces which - -

Vill permit the control interactions and data capture
necessary to support transportable debugging, performance
monitoring, and interface validation tools.

5.3D. System Parameter Query. The CAIS shall provide
facilities for the query of system environment parameters.
(See 3.2F.)

5.3E. Error Logging. The CAIS shall provide facilities for
the collection and reading, subject to access controls and
security rights to such information, of system-generated and
program-generated error nssages.

F-3

L°.

3D.-15



PRELIMINARY -SUBJECT TO CHIANGE NOT APPROVED
DoD Requirements &. Criteria for the CAIS 23-Mar-i 984

6. INPUT/OUTPUT AND DEVICE CONTROL FACILITIES

TBD

30-1-



77 .77.

PRELIMINARY - SUBJECT TO CHANGE NOT APPROVED
DoD Requirements & Criteria for the CAIS 23-iar-i 984

7. INTEROPERABILITY AND TRANSPORTABILITY

7A. Project Interoperability. The CAIS should facilitate
inter-APSE exchange of data structures such that large
projects can be feasibly moved.

7B. Standard External Form. The CAIS shall specify a
"standard external form" sufficient to represent and
reconstruct contents, attributes, and relationships of
selected data objects.

7C. Import/Export. The CAIS shall support import/export of
data represented using the "standard external form".

7D. Character Transmission. The CAIS should support the
transmission of all 8-bit character codes.

7E. Backup. The CAIS shall support backup and restoration of 6
CAIS-managed objects with their contents, attributes, and
relationships.

7F. Communication Failure. The CAIS shall provide facilities
to detect and interface with handlers for disruption of
coamumication, such as detectable accidental disconnection of
a terminal.

3D-17

2....... N..



STONEWG STATUS REPORT

Ann Reedy
Planning Research Corporation

The Stoneman Working Group (STONEWG) is a joint working group of the KAPSE

Interface Team and the KAPSE Interface Team for Industry and Academia

(KIT/KITIA). The purpose of the STONEWG is to identify and investigate issues

raised by or pertaining to the Stoneman document, especially those issues which

impact the work of the KIT/KITIA. The STONEWG is currently planning to produce ,

two documents: an Nannotated" version of the existing Stoneman document; and a

successor to Stoneman.

The current Stoneman document is a very general document. It requires = .6

clarification and refinement in many areas. In particular, there are many

issues implicit in the document which require resolution from the KIT/KITIA

point of view. The annotated Stoneman is a short term product designed to

identify the issues raised by the Stoneman and to provide a cross-reference for -A

other KIT/KITIA documents such as the Requirements and Criteria document. The

annotated Stoneman will contain the resolution of issues made by the KIT/KITIA

on those items which are important to interoperability and

transportability issues. The annotated Stoneman should evolve out of a Stoneman

analysis. The first phase of the Stoneman analysis has been completed. The

completion date for the annotated Stoneman will depend on the speed with which

issues are resolved. In that sense, the annotated Stoneman will be a working

document for the KIT/KITIA.

The existing Stoneman document was issued in February of 1980. Since that time,

a number of APSEs have been designed. Several of these have been implemented

and people are currently experimenting with their use. Since 1982, the KIT and

KITIA have been grappling with the problem of defining a set of KAPSE interfaces

and with other problems concering transportability of APSE tools and

interoperability of APSE databases. The STONEWG feels that enough has been

learned about APSEs in the last four years that the Stoneman document needs

substantial updating. The STONEWG has decided to take on the task of writing a
successor to Stoneman. The STONEWG is coordinating its efforts with the Joint

Services Software Engineering Environment committee (JSSEE) and with the

3E-1 " "

S.... -. '•-



Evaluation and Validation Team, both groups which have important input for, the

new document. No date has yet been scheduled for the completion of this -

document. A rough draft of an outline for the new document will be reviewed by
* STONEWG at the July KIT/KITIA meeting.

I3E-



STONEMAN ANALYSIS: PHASE I

Ann Reedy
Planning Research Corporation

I. Introduction

I.A. Background

The goal of the KIT/KITIA Is to def Ino a set of standard KAPSE Interfaces
for the purpose of achieving transportabili ty of APSE tools and
I nteroperab I Iity of APSE databases. SInce the Stoneman document
describes the general architecture and characteristics of an APSE, the
Stoneman sets the context within which the work of the KIT/KITIA must be
accomplished. Thus, the Stoneman is an Important document to the
KIT/KITIA. However, since It is a general document, the Stoneman Is not
sufficiently precise in many areas of Importance to the KIT/KITIA. The
Joint KIT/KITIA Stoneman Working Group (STONEWG) plans to produce an
"annotated" Stoneman for KIT/KITIA purposes. This analysis is the first
step towards this annotated Stoneman.

The purpose of this analysis is to aid In the Identification of Items
from Stoneman which need clarification or resolution from the KIT/KITIA
point of view. With this goal in mind, the material In Stoneman has been
reorganized by concept rather than by the original architectural
viewpoint. As Issues are resolved in the course of the KIT/KITIA work,
these decisions can be recorded as annotations to the Stoneman text.
Thus, It is hoped that this analysis wil evolve Into the annotated
Stoneman. This analysis will also be useful in cross-referencing the
Stoneman with the Requirements and Criteria document (a forthcoming
KIT/KITIA product) and the Common APSE Interface Set. A

I.B. Organization

This document has been organized by dividing the material In Stoneman
into "requirements," "criteria," and "rationale" and by grouping together
statements dealing with common concepts regardless of their original
location In the Stoneman. The concepts selected for the major groupings
have been taken from Stoneman Itself (paragraph I.C): major overall
requirements (Section II), database requirements (Section III), Interface
requirements (Section IV), and toolset requirements (Section V). In this
preliminary analysis, not all sections of Stoneman have been Included
(e.g., Stoneman section 2.C Strategy for Advancement). However, every l

effort has been made to Include all Stoneman scetions which deal with
APSE requ irements.

In this document, the term "requirement" Is applied, In general, to
statements which are testable. The term "criteria" Is applied to
statements which describe a capability which is desirable but which -
cannot be directly tested. The term "rationale" is applied to all other
staftents which Include definitions, descriptions of the possible

3F-I

0%."''%1



Implementations, etc. Note that the term "requirement" may be applied to
a Stoneman statement even if it is not written In the classical
requirement format and likewise, the terms "rationale" or "criteria" may
be applied to Stoneman statements which are written In the ususal
requirement format.

The relevant paragraphs or statements from Stoneman have been Included in
this document whenever possible. However, many statements have been
removed from context or modified by removing Irrelevant phrases. -

Further, no effort has been made to reference the original location of
the statements except by Stoneman paragraph numbers. Thus, It is
advisable to read this analysis with a copy of the original Stoneman
avail able.

3F-2

-1Z -. <7. .. .- ~ * .- *- -. -. . . .. . . . . ° .- . . ... . -. . . . . . . . - ° °-. o



II. Major Requirements

II.A. Purpose of an APSE .

I I.A.1. Requirements: Stoneman 1.B

1.1 The purpose of an APSE is to support the devlopment and
maintenace of Ada applications software throughout Its life cycle,
with particular emphasis on software for embedded computer
applications.

II.A.I.a Restatements of Requirements • Stoneman 2.5.1, 3.A, 3.D, 3.E

2.8.1 The overall objective of an APSE is to offer cost-effective
support to all functions In a project tem engaged in the development, 0
maintenance and management of a software project, particularly in the
embedded computer system field, throughout the lifetime of the
project.

3.A SCOPE: An APSE shall provide a program development and
maintenance environment for embedded computer systems projects *.
Involving Ada programs, with the Intent of Improving long-term cost
effective software reliability.

3.D LIFE CYCLE SUPPORT: Support shall be provided to projects
throughout the software life cycle from requirements and design
through Implementation to long term maintenance and modifications. _

3.E PROJECT TEAM SUPPORT: An APSE shall support all functions
required by a project team. These functions Include project
management control, documentation and recording, and long-term
configuration and release control.

II.A.2. Rationale: Stoneman 1.J, 2.A (all), 2.8.2, 2.B.15, 2.5.16, 4.F.2

Stoneman section 2.A describes the current practice and Its
deficiencies. It also supplies a definition (by example) of what is
meant by "life cycle."

2.13.15 A more comprehensive APSE [than a IIAPSE] will offer
specialized tools to support a wide range of these Eproject life
cycle] actIvles, possibly Including:

1) Requirements Specification
2) Overall System Design -
3) Program Design
4) Program Verification
5) Project Management

2.5.16 . . . a comprehensive APSE may encourage, or even enforce, one
specific system development methodology.

I.J It Is possible to take a broader and more general view of
program Ing env I ronments as embodying and supporting the complete

3F- 3

- . .- °° - o° ~~~~~.. ............ . 1 ° .. ...... ..... ..... °".
1  

. " °.° *"
-

.', .- _" ,, .°,

.% '. " " .' % .% ° °% .- °. .°. ., .. 'o ='.. .. ' . ' . %° , . . .% ' .' ." ". ' . % ' .°% -°. . ", . . " " . . °• .. . . . ,'°- %.. .,. .. . . " ' .



Integrated process of program design and evolution. This generality
is regarded as beyond the present scope of the Stoneman; however, the
aim is that the present document should not exclude a more general
view being developed and so It Is Intended to be "upwards compatible"
in all critical areas.

2.1.2 An APSE adopts a host/target apprach to software construction.
That is, a program which will execute in an embedded target computer
Is developed on a host computer which offers extensive support
facilities. Except where explicitly stated otherwise, this document
refers to an APSE running on a host machine and supporting development
of a program for an embedded target machine.

4.F.2 In describing an APSE, It is therefore necessary to specifly
three parameters:

(a) On what host machine does It reside? (e.g., the CD06600)

(b) What targets does It support In the sense of (a) [down-line
testing capabil ity or (b) [remote testing capability. above? (e.g.,
PDP/11)

(c) For which further targets does It generate code? (e.g., Intel
8080)

It is also necessary to specify whcih tools are appropriate for use on
a target In full or possibly In degraded form.

II.A.3. Criteria: Stoneman 2.8.3, 2.B.7, 3 (all)

2.1.3 An APSE offers a coordinated and complete set of tools which is
applicable at all stages of the system life cycle, from Initial
requirements specification to long-term maintenance and adaptation to
changing requirements.

2.13.7 At all stages of the devlopment of a progrem--design, coding,
testing, maintenance-an APSE encourages the programmer to work In Ada
source terms, rather than In terms of the assembly Inaguage of the
particular host or target machine.

Stoneman section 3 forms a useful set of criteria although it also
contains some requirements. The following section 3 paragraphs are
Included here as they are not relevant to other sections of this
document.

3.8 QUALITY: An APSE shall reflect the priorities for software
qualIty In millary embedded computer applications; that Is
reliability, performance, evolution, maintenance and responsiveness to
changing requirements.

3.K HARDWARE: An APSE will be designed to exploit, but not demand,
modern high capacllty and high performance host system hardware.

3.L ROBUSTNESS: An APSE will be a highly robust system that can
protect Itself from user and system errors, that can recover from

3F-4

.................... . .......................



unforseen situations and that can provide meaningful diagnostic
Information to its users.

Note that a definition of "coordinated set of tools* from 2.8.3 may be -
found in 3.M. The reference to Ada source terms is also found In 3.C.

1.B. Portability

ll.B.1. Requirements: Stonhman 1.D

1.D A further goal of great Importance In some areas of Ada usage,
such as within the DoDD is that of portability both of user programs
and of the software tools within the APSE. The Stoneman, therefore,
goes on to Indicate an approach to portability by giving requirements
for two lower levels within the APSE: the Kernel (KAPSE) and the
minial toolset (MAPSE).

II.B.I.a Restatements of Requirements : 2.8.10

2.8.10 The above paragraphs outline the facilities offered by an APSE
to its users In support of Ada programing. However, a further
requirement Is for portability both of APSE tools between, for
example, APSEs hosted on different machines and of complete APSE
toolsets. To address this aim and to Indicate a means of
implementation of an APSE designed to provide portability, this
document gives requirements for a low level portability Interface and
support function set (the KAPSE) together with a minimal toolset
(the MAPSE).

11.8.2. Rationale: none

11.8.3. Criteria: Stoneman 3.H, 3.J

3.H SYSTEM PORTABILITY: An APSE shall be portable so far as
practicable. this will normally be achieved by writing the system In
Ada, and by folowing the KAPSE design model as required In this
document.

3.J PROJECT PORTABILITY: An APSE shall be designed to facilitate the
easy movement of project support from one host machine to another. -

II.C. APSE Structure

II.C.I. Requirements: Stoneman I.E

I.E It Is convenient to represent an APSE which addresses these
problems as a structure with a number of layers or levels:

Level 0: Hardware and host software as appropriate

Level 1: Kernel Ada Program Support Environment (KAPSE),
I which provides database, communication and run-time

3F-5

.............................- ."



fl.-7 .

support functions to enable the execution of an Ada
program (including a MAPSE tool) and which presents a
machine-independent portabI ii ity interface.

Level 2: Mlnlal Ada Program Support Environment (MAPSE),
which provides a mlnlal set of tools, written In Ada and
supported by the KAPSE, which are both necessary and
sufficient for the development and continuing support of
Ada programs.

Level 3: Ada Program Support Environments (APSEs) which are
constructed by extensions of the APSE to provide fuller
support of particular applIcation or methodologies.

II.C.2. Rationale: Stoneman 1.C, 1.F

1.C The three principal features of an APSE are the data base, the
(user and system) Interface and the toolset. The data base acts as
the central repository for information associated with each project
throughout the project life cycle. The Interface Includes the control
language which presents an Interface to the user as well as system
Interfaces to the data base and toolset. The toolset Includes tools
for program development, maintenance and configuration control
supported by an APSE.

I.F (bullseye diagram)

II.C.3. Criteria: Stoneman 3.C

3.C SIMPLICITY: The structure of an APSE shall be based on simple
overall concepts which are straightforward to understand and use and
few in number. Whenever possible, the concepts of the Ada language
will be used in the APSE. -

3F-6

S. . ..-



III. 'Database" Requirements

III.A. External Functionality

III.A.1. Requirements: Stoneman 2.8.5, 5.C.3

2.8.5 Individual Edatabase) functions supported by the tools In an
APSE Include:

(1) Creation

(2) Modification

(3) Analysis

r (4) Transformation

(5) Display

(6) Linking

(7) Execution

(8) Maintenance

*...:... _=.

5.C.3 The KAPSE shall provide the database accefs functions that are

required by Ada programs within the APSE.

See also Stoneman 6.A.11.

III.A.2. Rationale: Stoneman 2.B.4, 4.A.I, 4.F.I 

2.5.4 The tools communicate mainly via the database, which stores
all relevant Information concerning a project throughout Its life
cycle. The database Is structured so that relationships between
objects In the database can be maintained, In order that configuration
control problems can be resol ved.

4.A.,1 The database Is the central feature of an APSE system. It will
act as the repository for all Information associated with each project
throughout the project life cycle.

4.F.1 INTER-TOOL COU4JNICATION. Note that where necessary, tools
will store Information In the database for later use by other tools.

3F .. .-7l



:57 - "7"..'

See also Stoneman 1.C, 6.B. 1, and 6.B.2. The definition of "database
object" can be found In Stoneman 4.A.3, 4.B.1, and 5.B.I.

III.A.3. Criteria: Stoneman 3.C, 3.M, 4.A.2, 5.C.3

3.C Tools will be designed where appropriate to . . . commicate
through the common database.

3.M INTEGRATED: An APSE shall provide a well-coordinated set of
useful tools, with uniform Inter-tool Interfaces and with
communicatlon through a common database which acts as the Information
source and product repository for all tools.

4.A.2 The database shall offer flexible storage facilities to all
APSE tools.

5.C.3 This [provision of database access functions] shall Include the
provision of the primitive functions necessary to permit the
Implementation of access control and security mechanisms as
appropriate.

III.B. Object Names

III.B.I. Requirements: Stoneman 4.A.3, 5.A.1

5.A.1 Each object In the database shall have a unique name
constructed from a sequence of Indentiflers. Each component of the
name shall conform to the Ada syntax for Identifiers. Where an object
is a member of a version group, a version qualifier may be appended -
to the name.

4.A.3 Every object stored In the databse Is accessed by the use of
its distinct name.

III.B.l.a. Restatements of Requirements: Stoneman 4.B.1, 4.8.2

4.B.1 An object has a name by which It may be uniquely Identified In
the database, . . .

4.8.2 All objects In the database are uniquely Identifiable; . . .

III.B.2. Rationale: Stoneman 4.A.3, 4.B.1

4.A.3 4.8.1 A separately Identifiable collection of Information In

the database Is known as an object.

See also Stoneman 2.B.7 . . .an APSE encourages the programmer to work
In Ada source terms . . .

111.8.3. Criteria: none

3F-8

.. ..., ..... , _ ... ... .. .. .., .,. ... . ... ,. .., . . .. , .. . ... ......... . : -...... , ..., . . . . ." --



lll.C. Object Content

IiI.C.I. Requirements: Stoneman 4.B.1, 5.A.2, 5.A.9-

4.•

3.1 An object . . . contains Information.

5.A.2 The database shall not Impose restrictions on the format of
Information stored In an object.

5.A.9 The database shall allow APSE tools to access . . . the0
Information content of objects

III.C.2. Rationale: Stoneman 4.8.1, 5.13.1

4.B.1 Typically, an object may contain a separately compliable Ads
program unit, a fragment of Ada text, a separable definition, a file
of test data, a project requirements specification, an aggregation of
othe object-names (i.e., a configuration; see below), a documtentation
file, etc.

5.B.1 An object In the database consists essentially of:

(a) Its contents; that Is the raw Information It contains, and

In many systems a complete object Is represented by . . storing

the object Itself as an unstructured file.0

See also the defintions of object In 11...2.

IlI.C.3. Criteria: none

ill.D. Object Attributes

III.D.1.1 General Requirements: Stoneman 5.A.4. 5.A.9, 5..1

5.A.4 Objects In the database shall have attributes.

5.A.9 The database shall allow APSE tools to access . . . the
attributes of objects...

5.h.1 The attributes which record history, categorization and access
rights are mandatory. The list of possible attributes Is open-ended
and some APSEs may provide further attributes.

III.D.1.1.a. Restatements of Requirements: Stoneman 4.8.1

4.B.1 An object has . . . attributes..

IIl.D.1.2. Rationale: Stoneman 5.8.1

5.8.1 An object in the database consists essentially of:

3F-9

• • • .*.... '

. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . _-* . -



(b) Its attributes; that is, meta-informatlon describing the nature -

of the object, Its history, categorization and so on.
In many systems a complete object is represented by associating the

attribute Information'wlth the directory entry for the object . . .

III.D.1.3. Criteria: none

III.D.2.1. History Attribute Requirements: Stoneman 5.A.5, 6.A.12

5.A.5 Every object shall have a history attribute.

6.A.12 As minimal functions this tool [the configuration manager]
will enable interrogation of history attributes and will offer
managerial control over the persistence of objects in the database.

See also Configuration Control.

III.D.2.1.a. Restatements of Requirements: Stoneman 4.A.6, 4.B.4

4.A.6 Mechanisms shall be provided in the database whereby all
database objects needed to recreate a specified object will continue
to be maintained In the database as long as the specified object Itself -

remains In the database.

4.B.4 It Is therefore a requirement at the KAPSE level that history
attributes be maintained for all objects . . .

III.D.2.2. Rationale: Stoneman 5.A.5

5.A.5 The history attribute records the manner In which the object
was produced and all Information which was relevant In the production
of the object.

I11.D.2.3. Criteria: Stoneman 5.A.5

5.A.5 The history attributes shall contain sufficient information to
provide a basis for comprehensive configuration control.

III.D.3.1. Categorization Attribute Requirements: Stoneman 5.A.6

5.A.6 Every object shall have a categorization attribute which

Indicates the category of Information contained In the object.

ll.D.3.1.a. Restatements of Requirements: Stoneman 5.8.2

5.B.2 Every object has a category attribute.

III.D.3.2. Rationale: Stoneman 5.A.6, 5.8.2

3F-10

• .-..., :..-.', ...-.-.........................-..............-............... ..................... .... ...... ....-.:-. ... . _,



-7. 7 .

5.A.6 It shall be possible for the categorization attribute to be used
In such a way that APSE tools are offered protection against accessing
an object In a way that Is not meaningful (I.e., Incompatible with the
format and /or content of the object) but are not prevented from
accessing an object In any way that Is meaningful.

5.B.2 In general, a tool will only access objects of an appropriate
category. Other tools, however, may need to access objects regardless
of their category; one such tool Is a general copying tool. The
requirement on the KAPSE encompasses both of these styles of access.
However, the requirement does not dictate the manner In which protection
is offered, nor that the protection mechanism must actual ly be
Implemented within the KAPSE.

Ill.D.3.3. Criteria: none

III.D.4.1. Access Rights Attribute Requirements: Stoneman 5.A.7

5.A.7 Every object shall have an attribute which Indicates access
rights to the object.

See also Access Controls.

Iii.D.4.2. Rationale: none

III.D.4.3. Criteria: none

IlI.E. Relationships Between Objects

III.E.1. Requirements: Stoneman 5.A.3, 5.A.9

5.A.3 The database shall permit relationships between objects to be
recorded.

5.A.9 The database shall allow APSE tools . . . to traverse the
networks formed by relationships between objects.

III.E.1.a. Restatfents of Requirements: Stoneman 4.A.3 ...

4.A.3 The database shall permit relationships to be maintained between
objects.

IlI.E.2. Rationale: none

Il.E.3. Criteria: none

III.F. Versions

F.. ..
3F-i1 l::.::::

•0%: .

-~ -'-"-:.I .:.:.:-



iI.F.I. Requirements: Stoneman 4.A.4, 5.A.1

4.A.4 The database shall permit the user to designate several distinct
database objects as forming a "version group." The user shall be
permitted to designate one object within the group as being the
preferred (or default) version. A method of access shall be offered In
which an Incomplete object name Is provided, sufficient to Identify
explicitly a version group but not one object within that group; with
such access, the preferred version Is selected. Every object within a
version group shall always be accessible by providing the complete
object name.

5.A.1 Where an object Is a member of a version group, a version
qualifier may be appended to the name.

lll.F.1.a. Restatements of Requirements: Stoneman 4.A.5

4.A.5 The configuration control facilities shall allow access to the

objects In a version group by the use of an incomplete name.

i.F.2. Rationale: Stoneman 4.13.2

4.B.2 VERSIONS: . . . however, a group of objects may exist as related
versions which all may meet the same or closely related external
specifications and may therefore be regarded as different versions of
the same "abstract object." Within such a group, the user may specify
that one object Is the normal, default or preferred version which Is to
be used whenever the user does not indicate a specific one. Typically,
In many current systems the concept of the most recent version of a
"module" plays an Important role and It may be that this methodological
choice will be made In many APSEs; however, the requirements do not
prescribe this approach.

lll.F.3. Criteria: none

111.0. Partitions

lll.G.1. Requirements: Stoneman 4.A.7

4.A.7 It shall be possible to establish partitions of the Information
In the database such that, for example, all objects connected with a
specific project area can be grouped in a partition. It shall be
possible to associate general access controls with partitions.

lll.G.2. Rationale: Stoneman 4.B.5

4.13.5 PARTITIONS: The partition level Is the highest level grouping
In the database. It exists primarily for managerial purposes as a
means of applying broad access and bugetary control to large
collections of Information associated with projects. It can also play
a part In Implementation strategies designed to Improve access to
specifically Important partitions In large data bases.

317-12



III.G.3. Criteria: none

III.H. Configuration Control

III.H.1. Requirements: Stoneman 4.B.4, 6.A.12

4.B.4 It Is a requirement of an APSE that configuration control be
provided.

It is therefore a requirement at the KAPE level that history
attributes be maintained for all objects (see 5.A.5 below) as a baisis
for a configuration control system. At the MAPSE level a
configuration control system Is reuqlred but not specified In detail.

6.A.12 CONFIGURATION MNANGER: A tool Is required to assist In long
term configuration control of projects. As minimal functions this
tool will enable Interrogation of history attributes and will offer
managerial control over the persistence of objects In the database.

III.H.l.a. Restatements of Requirements: Stoneman 4.8.3 ,

4.B.3 The system must contain tools to enable the generation, release
and subsequent control of a project which exists In multiple
congi furations.

III.H.2. Rationale: Stoneman 4.8.3, 4.8.4 _

4.8.3 CONFIGURATIONS: Different collections of objects In a project
may be brought together to form different groupings or "software
configurations." The differences arise In response to, for example,
differing categories of user requirements or differences between
peripheral devices on various target systems. Some configurations are - .
long-lived, such as major system releases, and others may be temporary
test-beds for development purposes. The relationships between objects
in different configurations are In general complex, partially
overlapping and not well-structured. Sane configurations are related
In time, such as consecutive "releases;f others co-exist In time as
separate "models." Note that configurations are themselves objects and
may therefore exist in version groups.

The autanatic rederivation of configurations as a result of constituent
changes may be a methodological choice In sane APSEs.

4.8.4 . . . In general this [configuration control] necessitates S
recording and preserving sufficient Information to establish, for any
extant configuration, its precise contituents and all relevant
Information to support their repair or modification.

The detailed requirements on configuration control systems are left to
sane extent open to design choice. One position to take is that no -
object whatever can be deleted from the database If it Is referenced In .-.

the history attribute of any other object. This maximises reliabilIty
and maintainability and In many application areas, if combined with an

3F-13



effective archiving system, would be the preferable approach.

However, In other areas the requirements may differ and may .
indicate that Indefinite preservation should be the priviledge of
specified objects only (see 4.A.6) and objects not so specified, under
managerial control, may be purged from the database.

III.H.3. Criteria: Stoneman 4.A.5, 4.8.3, 5.A.5

4.A.5 The database shall support the generation and control of
configuration objects; that Is, objects which are themselves groupings
of other objects In the database. The configuration control facilities
shall allow access to the objects In a version group by the use of an
incomplete name.

4.B.3 It is generally necessary to be able to determine for any
configuration exactly what are the components of that configuration and
to be able to reconstruct in detail the history and antecedents of each
component.

5.A.5 The history attributes shall contain sufficient Information to
provide a basis for comprehensive configuration control.

111.1. Access Controls

111.1.1. Requirements: Stoneman 4.A.7, 4.A.9, 4.8.6, 5.A.9

4.A.9 It shall be possible to associate access controls with any object
In the database.

4.B.6 In order to meet these requirements, the KAPSE must have
knowledge of individual user identification.

5.A.9 Access protection shall be applied to attributes so that
attribute consistency Is maintained.

4.A.7 It shall be possible to associate general access control with
partitions. ,-I..

111.1.2. Rationale: Stoneman 4.B.6

4.B.6 ACCESS ONTROLS: The access control requirements on APSEs are
expected to be highly specific to the applications area and
methodology of each APSE. Some areas will require very detailed
controls whereas others will require only a few broad classes of
protection.

These may well be handled by the local underlying operating system.

111.1.3. Criteria: Stoneman 4.A.9, 4.B.6, 5.C.3

4.A.9 Such access controls shall be appropriate for the environment In

which the particular APSE system Is deployed, and shall be commensurate

3F-14



with the requirement that an APSE supports all roles In a project team
throughout the lifetime of a project.

4.B.6 The key requirement for a KAPSE Is therefore that the primitive
protection facilities It offers shall be sufficiently general purpose

* so that It can provide the basis for any required access control system
* In the APSEs built on that KAPSE.

5.C.3 This [provision of database access functions by the KAPSE] shall 4 .-

Include the provision of the primitive functions necessary to permit the
Implementation of access control and security mechanisms as
appropriate.

Ill.J. Consistency and Integrity

* lll.J.1. Requirements: Stoneman 4.A.12, 5.A.8, 5.A.9

4.A.12 The database shall preserve the consistency of the Information
and relationships It contains.

5.A.8 The database Interface shall permit provision of an archiving
facility whereby files may be relegated to backing storage media while
nevertheless retaining the Integrity. consistency, and eventual
availability of all Information In the database.

5.A.9 Access protection shall be applied to attributes so that
attribute consistency Is maintained.

lll.J.2. Rationale: none

ili.J.3. Criteria: Stoneman 5.A.5

5.A.5 Any necessary constraints shall be Imposed on database
operations so that the validity and consistency of history attributes
is ensured.

Ill.K. Archiving

iII.K.I. Requirements: Stoneman 4.A.6, 5.A.8, 6.A.12

5.A.8 The database Interface shall permit provision of an archiving
facility whereby files may be relegated to backing storage media while
nevertheless retaining the Integrity, consistency, and eventual
availability of all Information In the database..

*6.A.12 CONFIGURATION MANAGER: A tool Is required to assist In long
term configuration control of projects. As minimal functions this
tool will enable Interrogation of history attributes and will offer
managerial control over the persistence of objects In the database.

4.A.6 Mechanisms shall be provided In the database whereby all-

3F-15



database objects needed to recreate a specified object will continue
to be maintained in the database as long as the specified object
Itself remains In the database.

I .K.2. Rationale: Stoneman 4.A.11

4.A.11 The capabilities of the APSE database system shall be such
that the users may work within the APSE to achieve reliable storage of
objects, Including long-term storage of archived objects.

III.K.3. Criteria: none

III.L. Management Reports

III.L.1. Requirements: Stoneman 4.B.7

4.1.7 . . . the database should contain Information enabling at least
two classes of [management] reports to be produced:

(a) Progress reporting . . .

(b) Statistical reporting . . .

II.L.2. Rationale: none

III.L.3. Criteria: Stoneman 4.A.I0, 4.B.7, 4.E.11 -

4.A.10 The database shall store Information which allows management
reports to be generated, as required at the particular APSE system.

4.13.7 .

(a) Progress reporting--budgets, schedules, review and
Implementation dates, responsibilites, error report tracing, etc.

(b) Statls'cal reporting-usage frequencies, system loading, etc.

4.E.11 Such summary data [provided by APSE tools3 shall be stored In
the APSE database and will be project-dependent In nature. - -

III.M. I/O -

III.M.i. Requirements: Stoneman 5.A.I0

5.A.10 It shall be possible for the actual reading and writing of
database objects to be performed from within an Ada tool using the
standard Input/output faciclitles of the language, as defined In
package INPUT OUTPUT.

111.14.2. Rationale: none

3F-16

S.e.......°.......°.........'..°°..- ....- '... .. -°-°... .- ' ,. .- °.'..°....,.,... j



111.M.3. Criteria: none

III.N. Ada Libraries

III.N.1. Requirements: Stoneman 4.A.8 -

4.A.8 The database shall support the storage of Ada libraries In .
source form, and may also support a form where the library object has 9
been pre-compiled for the host or a particular target machine.
Facilities for determining the availability and functional
specification of library objects shall be provided.

III.N.2. Rationale: none
6

III.N.3. Criteria: none

111.0. Reliability - .

111.0.1. Requirements: none

111.0.2. Rationale: none

111.0.3. Criteria: Stoneman 4.B.8

4.B.8 RELIABILITY: The degree of reliability required In the
database Is specific to the Individual application area as It depends
on the economically justifiable level of back-up required on the
equipment for the project.

3F-17

-* . . ,

l":. " -



IV. "Virtual Interface" Requirelments

IV.A. General Requirements

IY.A.1. Requirements: Stoneman 4.C.1, 4.C.2, 4.C.3, 4.C.9

4.C.1 A virtual Interface which Is Independent of any host machine
shall be provided for APSE communication.

4.C.2 The virtual Interface shall be based on . . . concepts . . .
which are few In number.

4.C.3 The virtual Interface shall permit the invocation of individual
tools from the APSE toolset.

4.C.9 A mechanism for returning to the underlying operating system
shall be provided In the APSE.

IV.A.I.a. Restatements of Requirements: Stoneman 4.D.4 . .

4.D.4 . . . the environment must provide a primitive operation which
enables the Initiation of a program to be carried out.

IV.A.2. Rationale: Stoneman 4.D.4

4.0.4 The requirements of 4.C.3 . . . may well be Implemented by a
command language (or Job control language).

More'precisely, this operation permits a data structure (such as a

compiler output) to be executed as a program on the host.

See also Stoneman 1.C. -

IV.A.3. Criteria: Stoneman 4.C.2

4.C.2 The virtual Interface shall be based on simple overall concepts
which are straightforward to understand and use . . .

IV.B. User Interface Requirements

V..1 Requirements: Stoneman 2.B.6, 4.C.4, 4.C.5, 4.C.7,
4.C.8, 4.E.6, 5.D.2. 5.D.3

2.B.6 The user Interface offered by an APSE is Independent of the
host machine.

4.C.4 The user may access the virtual Interface from a variety of
phylsical terminal devices.

4.C.5 The virtual Interface shall permit the user to Interact with
the Invoked tool and to exercise control over the tool.

3F-18

.. . ................-......... .........°., ° ..... o......-.........° .. .. ..-.... •. ..



70

4.C.7 An APSE must prevent access from the user which might affect
the Integrity of the KAPSE and Its facilities.

4.C.8 It shall be possible for all necessary communication between
the APSE and the user to be expressed In the standard Ada character
set.

4.E.6 The principles for communication between tools and the user - :
shall be . . . uniform throughout an APSE toolset. The uniform
principles shall apply to error handling as well as to normal
operation of a tool.

5.D.2 CONTROL FUNCTION LIST The KAPSE shall define a fixed set of
terminal Interface control functions.

5.D.3 CONTROL KEYS: The list of standard control keys used to
Initiate these [terminal Interface control function] Interactions Is a
convention and Is parameterlsed within the KAPSE. The list may be
changed If this Is necessary to avoid conflict with other local
conventions.

IV.B.I.a. Restatments of Requirements: Stoneman 3.G

3.G UNIFORITY OF PROTOCOL: Communications between users and tools
shall be according to uniform protocol conventions.

IV.B.2. Rationale: Stoneman 4.C.9, 4.D.2, 4.D.4, 5.D.1

4.C.9 Initial user connection to the APSE may require use of the host
operating system.

4.D.2 USER INTERACTION WITH TOOLS: The degree of interaction
possible between a user and a tool depends on the "granularityw of
that style of device; for example, Interaction from a batch terminal
Is limited to Initiation of the job, provision of data and parameters
and notitication of the completion of the job together with its
resu lts.

4.D.4 COMMAND LANGUAGES: Given this -program Initiation primitive], 0
one possible approach to the Implementation of a command language Is
to use a basic Ada-like language whose facilities, offered by a simple
Interpreter tool, provide little more than the ability to perform
simple editing of c-mand lines and to Intlate programs.

The requirement in 4.C.6 Indicates that the primitive Initiation •
facility used by the command language will be made available as a
library procedure to Ada programs. This will enable the user to
construct job control sequences as Ada program texts which Initiate
other programs. This use may veil be subject to same restrictions;
for example, to prevent recursive Initiation In unsuitable cases.

A more general approach Is to regard the user interaction as being
expressed entirely within Ada program segments which are executed or
Interpreted as necessary In the context of relevant points In the APSE

3F-19

. . . . . ... . . .

,7 7



7 -7 7..

database, thus providing a total Ada environment similar, for example,
to an Intellsp environment.

In view of this range of possibilities, the detailed choice of command S
language Is left as a design decision for specific APSEs.

5.D.1 INTERACTIVE TERMINAL CONTROL: During execution of a prgram In
an Interactive system the requirement exists for the user to be able
to have various levels of asynchronous interaction with the program, -

ranging from requrests to terminate irrelelvant output to commands to .
terminate the entire session. A provisional list of functions
required In given below [5.D.2J.

IV.B.3. Criteria: Stoneman 3.F, 4.D.1, 4.E.6, 5.C.6, 5.D.2

3.F USER HELPFULNESS: High priority will be given to human .
engineering requirements in the design. The system shall provide a
helpful user Interface that is easy to learn and use, with adequate
response times for Interactive users and turn-around times for batch
users.

4.D.1 VARIETY OF CONTROL DEVICES: The virtual Interface will in "-

practice, be accessible to the user In so far as practicable from the
terminal devices available with a particular system. In general these
may be from three categories:

(a) batch terminals
(b) keyboard Interactive terminals - -

(c) high band-width graphics Interactive terminals

Where meaningful, the same control signals will be accepted by the
terminal Interface routine from all devices of these types.

4.E.6 The principles for communication between tools and the user
shall be simple . . . p

5.C.6 The KAPSE shall provide mechanisms where appropriate whereby
asynchronous commands Issued by a user at an interactive terminal can
be applied to the executing tool.

5.D.2 The list [of terminal control functlonsJ should be short,
functionally adequate and human engineered to fit the needs of the
terminal user. The following list Is proposed:

(a) Issue a request to terminate the current function
(b) Issue a request to terminate the current program
(c) Suspend the current program and establish a new Invocation of
the command language Interpreter
(d) Terminate the current command language Interpreter Invocation
and resume the program suspended when the current CLI was Invoked
(e) Abort the current progran and return to Its Invoker
(f) Abort the current progran abd return to the nearest co-and
language Interpreter level.

IV.C. Intertool Interface Requirements

3F-20

-- :•. .:.: :- : : :.-: : :.- : ... .- --. : .. . .. :- : ... : .: .: .: .: :.. : .: . :: : .: ::- ...: :. .-: .; .: ... ...: .": ..: -: .,. : .": :.. .. . . ..



. .,...

IV.C.1. Requirements: Stoneman 3.M, 4.E.2, 4.E.5, 5.C.4, 5.C.5

3.M INTEGRATED: An APSE shall provide a . . . set of . . . tools 0
with uniform Inter-tool Interfaces . . .

4.E.2 Tools in an APSE shall be . . . composable with other tools In

order to carry out more complex functions where appropriate.

4.E.5 Inter-tool communication shall be via the virtual Interface. •

5.C.4 The KAPSE shall provide a mechanism whereby it shall be
possible for one APSE tool to invoke another APSE tool and supply the
invoked tool with parameters.

5.C.5 Input/Output support offered by the KAPSE shall be such that
package INPUT-OUTPUT can be used by an Ada tool for communication with
the control device from which the tool was Invoked.

IV.C.1.a. Restatements of Requirements: Stoneman 4.C.6

4.C.6 APSE tools may access the virtual Interface; e.g., to Invoke
other tools.

IV.C.2. Rationale: Stoneman 4.D.3, 4.D.4

4.D.3 ACIIEVABILITY OF COMMAND FUNCTIONS FROM WITHIN PROGRAMS: The
requirement of 4.C.6 Is fundamental to the composition of tools. _

4.D.4 . . . The requirement In 4.C.6 Indicates that the primitive
Initiation facility used by the command language will be made
available as a library procedure to Ada programs.

See also Stoneman 4.F.1.

IV.C.3. Criteria: Stoneman 4.E.3, 4.E.5

4.E.3 Tools . . . where possible shall conform to standard Interface
specifications.

4.E.5 The communications between tools shall be simple and uniform
throughout an APSE toolset.

IV.D. KAPSE Interface Requirements

IV.D.1. Requirements: Stoneman 2.B.13, 5.C.2, 5.C.4, 5.E.1, . -
5.E.3 , 5.E.4, 5.E.5 5.E.6, 5.E.7, 5.E.8, 5.E.9 '"-'

2.B.13 . . . the external specifications for the KAPSE will be fixed,

5.C.2 The KAPSE shall offer the Input/output support facilities that
are required by Ada programs within the APSE which use the standard

3F-21

. °.° :.°'':".''°~oo.. . . . . . . . . . . .- . . ..-. . .°% ,. - " .. °' °•.-. •"- .. o".. . . . . . . . . . . .". .°-, . ', -. ° ° .



Input/output facilities of the language, as defined by package
I NPUT/OUTPUT.

5.C.4 The KAPSE shall provide a mechanism whereby It shall be
possible for one APSE tool to Invoke another APSE tool and supply the
Invoked tool with parameters.

5.E.1 The KAPSE shall Implement Interface definitions which shall be
available to APSE tools. Such Interface definitions shall be given In -

the form, of package specifications In the Ada language.

5.E.3 The source representation of a compilation unit shall be as
defined in the Ada reference manual.

5.E.4 An abstract syntax definition of a compilation unit shall be
specified.

5.E.5 A post syntactic/semantic analysis Intermediate language
defintion of a compilation unit shall be specified.

5.E.6 An abstract data type definition of an executing Ada program
shall be specified. The abstract data type shall offer read/write
access to both the code segments and the data spaces of the executing
program. When used In conjunction with the full symbol tables (see
5.E.7 below), this abstract data type shall allow the production of
source-level debugging tools.

5.E.7 An abstract data type definition of a comprehensive symbol table
for a compilation unit shall be specicifed. In addition to the basic
symbol declaration entries, the abstract data type shall encompass
source line locations, symbol usage, program topology, and other
Information required by basic analysis, testing, or debugging tools.

5.E.8 An abstract data type definition of a "library file" (Ada
Reference Manual, section 10.4) shall be specified. This abstract
data type shall allow new compilation units to be added to the library
file, and shall allow the relationship between compilation units In
the library file to be determined.

5.E.9 When used In combination, the symbol table and library file
abstract data types shall permit construction of comprehensive symbol.
table(s) for the (possibly Incomplete) program(s) represented by the
contents of the library file.

* See also Stoneman 4.C.7 and 4.C.9.

* IV.D.1.a. Restatements of Rwquirements% Stoneman 2.B.12

2.B.12 The declarations which are made visible by the KAPSE are given
In one or more Ada package specifications. These specifications will
Include declarations of the primitive operations that are available to
any tool In an APSE. They will also Include declarations of abstract
data types which will be common to all APSEs, Including the data types
which feature In the Interf ace specifications for the various stages
of compilation and execution of a program.

3F-22L



IV.D.2. Rationale: Stoneman 2.B.11, 2.B.13, 5.C.1, 5.F (all)

12.B.11 The purpose of the KAPSE is to allow portable tools to be -
produced and to support a basic machine-independent user Interface to
an APSE, Essentially, the KAPSE Is a virtual support environment (or
a "virtual machine") for Ada programs, Including tools written In Ada.

2.B.13 While the external specifications for the KAPSE will be fixed,
the associated bodies may vary from one Implementation to another. In
general all software above the level of the KAPSE will be written In
Ada, but the KAPSE Itself will be Implemented In Ada or by other
techniques, making use of local operating systems, filing systems or
database systems as appropriate.

5.C.1 The KAPSE shall offer the basic run-time support facilities
that are required by Ada programs that execute within the APSE.

See also Stoneman I.E.

IV.D.3. Criteria: Stoneman 5.C.6, 5.D.4, 5.E.2

5.C.6 The KAPSE shall provide mechanisms where appropriate whereby
asynchronous commands Issued by a user at an Interactive terminal can
be applied to the executing tool.

5.D.4 PROVISION OF FUNCTIONS: In general, the KAPSE will be
specified as a series of Ada package definitions making extensive use
of the concept of abstract data types. This technique can be used
both to provide KAPSE functions as listed In 5.C above and to provide .. .
data structure descripition of Interfaces as in 5.E below.

5.E.2 Interface definitions provided by the KAPSE shall encompass
(i) the primitive operations that the KAPSE makes available to APSE
tools; these Include any operations that may be neccesary to
supplement the facilities of package INPUT-OUTPUT (see 5.A.10) In
order to allow an APSE tool access to all the functional
capabilities of the database,

(II) the abstract data types (type declarations plus operations)
that are required to Interface the various stages of compilation; "
these Include the data types that are produced by a compilation
stage for later use by analysis, testing, or debeugging tools.

3F-23

:.:...................................-. .

.. . . . . . . . . . . .



-4.-.oossal writn In Ad , . . . .

4.EV. Toolset Requirements be ",.e c

V.A. APSE Toolset Requirements

V.A.1.2. General Requirements: Stoneman 4.E.2, 4.E., 4.E.5

4.E.3 Tools shall be written in Ada . . a d s.

4.E.2 Tools inan APSE shall be designed to meet clear functional
needs and shall be coposabie with other tools in order to carry out
more complex functions where appropriate.

4.E.5 The communication between tools shall be uniform throughout an

APSE tool set.

V.A. 1.2. Rationale: Stoneman 7.A (all). .

Stoneman section 7.A consists of descriptions of suggested APSE tools.
These tools Include: an Ada program editor, a docmentation system. a
proJect control system, a configuration control system, measurementtools, a fault report system, requirement specification tools, design

~~tools, verification tools, translators, and conunand Interpreters. " F

V.A.1.3. Criteria: Stoneman 3.2, 3.N, 4.E.5, 4.E.7, 4.E.11

.13. E An APSE shall provide a well-coorinate set of useful tools

i-'- ~3.N GRANULARITY: Tools will be designed where appropriate to have.- -""

separable limited functon components that are composable, user~~~~selIectable . "---

4.E.5 The communications between tools shall be simple throughout an
APSE tool set.

4.E.7 An APSE toolset shall offer comprehensive "help" facilities toSAS E Use r s."l

4.E. 11 APSE tools shall provide appropriate summary data for -

':..,: management reports and control. " !-: 'i

V.A.2.1. Extensiblity1 Requirements: Stoneman 2.B.8, 3.P. 4.E.8 .. "

. ~~2.8.8 Extension of an APSE toolset requires knowledge only of the'."-.-
particular APSE and of the Ada language. A new tool-for exunple. an

" ~~environent simulator-is written within the APSE. This tool can then ' :.i.

• ~be Instal led as part of the APSE and subsequently Invoked. _

.: ~~3.P OPEN-ENDED: It Can APSEI] shall permit Improvements, updates and.. ...

replacement of tools.

3F-24

7 Z7.



. . . . .. . . ..

4.E.8 An APSE toolset shall support Its own extension with new tools
written in Ada.

V.A.2.1.a. Restatements of Requirements: Stoneman 4.E.4

4.E.4 The set of tools In an APSE shall remain open-ended; it shall
always be possible to add new tools.

V.A.2.2. Rationale: none

V.A.2.3. Criteria: Stoneman 3.P

3.P An APSE shall facilitate the development and Integration of new
tool s.

V.A.3.1. Compile, Test, and Debug Requirements: Stoneman 4.E.I, 4.E.9,
4.E.10

4.E.1 . . . an APSE shall support the separate compilation features p
of the [Ada] language.

4.E.9 An APSE toolset shall permit testing and debugging of any Ada
program which does not use machine-dependent features of the language.
It shall be possible to perform such testing and debugging purely In
terms of the Ada source text and Ada language concepts (I.e., without _

reference to the Instruction set or architecture of any machine).

4.E.10 An APSE shall permit testing and debugging of an Ada program -

executing in any target machine supported by the APSE. It shall be
permitted for such a program to use the machlne-dependent features of
the language.

V.A.3.2. Rationale: Stoneman 4.F.2

4.F.2 TARGET ENVIRONMENTS. As stated In various sections above, the
model of program development expressed In the APSE approach is that of
a host-target system where the host offers the vast majority of the
support facilities. The whole purpose of the APSE, however, Is to
develop and support target machine programs and, in embedded computer
systems in particular, final testing on the target machine Is normally
essential. The Intention Is for that testing to be carried out In Ada
terms so far as praticable.

Four general styles of target resident testing are envisaged: -

(a) Down-line testing via a host-target macihine link with a
target test supervisor resident In the target. The APSE is
regarded as distributed between the machines, and the target test
superisor is part of the APSE.

b) Remote testing where the target machine Is not directly linked
to the host but where the target configuration can support APSE-

3F-25

" ..-.



compatible tools to provide a target-resident test environment.
The target-resident part of the APSE wmy be regarded as linked to
the rest of the APSE by batch-style communication.

(c) Isolated testing on the target machine In cases where target
configuration limitations or the application environment preclude
the availability of APSE-compatible facilities on the target. In
these cases, testing methods wil continue as at present to be
specific to the target and the application.

(d) Direct testing in situations where the target machine Is the
same as the host machine.

V.A.3.3. Criteria: Stoneman 4.E.1, 4.E.10

4.E.1 The tools in an APSE shall support the development of programs
in the Ada language as defined by the Ada reference manual.

4.E.10 The facilities for testing and debugging of target-resident
programs should be based upon the equivalent facilities for host-
resident programs.

V.B. MAPSE Tooleet Requirements

V.B.1. Requirements: Stoneman 2.B.14, 6,A (all)

2.B.14 The minimal APSE (MAPSE) is one which . . . supports Its own
extension with new tools written in Ada. Hence, the MAPSE is an APSE
and must meet the general requirements set down for APSEs.

6.A.1 TEXT EDITOR: A standard text editor shall be provided with
facilities suitable for editing general text, including
specifications, design and other documents, and source programs. The
editor shall provide the following functions: find, alter, Insert,
delete, format, Input, output, move, copy, and substitute.

6.A.2 PRETTYPRINTER: A display tool is required to format and output
textual material ranging form documentation to source programs. More
specifically, It shall print database objects In legible formats which -

depend on the object categorization.

6.A.3 TRANSLATOR: A MAPSE will Include at least one Ada translator,
which translates source Ada programs into target code for the host and
at least one target. The detailed requirements on the translator are
that It should Interface to the KAPSE as specified In section 5E above
and thereby be cooperative with the other tools.

6.A.4 LINKERS: Linkers are required In a MAPSE for both the host and
target machines. The facilities needed are:

Partial linking of program units In conformance with language
specifications

3F-26

-= * -'.=*"'° o'.="* • ="''•,''-. S- ' .'° , '-. -" "%-- "=l



Creation of an executable program from program units (perhaps
partially linked) with the following options:

Logical to physical mapping 0
Overlay management
Omission of unused compilation units
Creation of a single load file
Linkage map Including variable types and unit cross references
Elimination of redundant generic code bodies- --

6.A.5 LOADERS: Off-line and /or down-line loading shall be -
supported.

6.A.6 SET-USE STATIC ANALYSER: A tool is required to provide a cross-
reference map Indicating where each data item Is changed In value and
where it is merely referenced.

6.A.7 CONTROL FLOW STATIC ANALYZER: This tool produces a chart of
the program control topology. This will Indicate which routines are
called from where In the program and may Indicate exception scopes and
Inter-task communication calls.

6.A.8 DYMANIC ANALYSIS TOOL: On systems with an Interactive S
capability this tool shall provide the following functions:

(a) Snap shot;
(b) Break (with facilities to alter values of variable for
Interactive use);
(c) Trace;
(d) Interface simulator (for dummy program units); - 0
(e) Statement execution monitor.
(f) Timing analysis.

6.A.9 TERMINAL INTERFACE ROUTINES: Corresponding device handlers
shall be provided for each variety of terminal device available on a
specific configuration. These Interface between the terminal and the .
relevant functions and data structures In the KAPSE.

6.A.iO FILE ADMINISTRATOR: A file transfer and compare facility
shall be provided. A standard transfer format shall be adopted and
the following facilities provided:

F I le Comper I son C
Error Control
File Transmission
Title Tranmission
History Attribute Tranmission.

6.A.11 COMMAND INTERPRETER: A command Interpreter capable of 0
Invoking all APSE tools (potentially with parameters) must be provided
by a MAPSE. Users communlcating with the command Interpreter through
an Interactive device must be provIded with:

1) Facilities for editing and Inspecting command lines prior to
carrying out the coammand. S

2) Positive responses to all Interactive operations.

3F-27

-. - ".o " °



The command language accepted by the Interpreter must enable the
storage of sequences of commands In the database for later execution.

6.A.12 CONFIGURATION MANAGER: A tool Is required to assist in long
term configuration control of projects. As minial functions this tool
will enable Interrrogation of history atrrlbute and wil offer
managerial control over the persistence of objects In the database.

V.8.2. Rationale: Stoneman 2.B.14, 2.B.15, 6.A.1, 6.B (all)

2.8.14 The minlal APSE (MAPSE) Is one which provides a minial but
useful Ada programming environment . . .

2.B.15 For many Important acltlvites during a project life cycle as -

listed below, the only support offered by the MAPSE consists of
general text manipulation facilities.

6.A.1 The location of the text [by the text editor] may be by line
number, by context or equivalent.

6.B.1 The most common action In a programming environment is the
manipulation of objects. In a complex APSE, much of this manipulation P
is done automatically by many of Its advanced tools. In a MAPSE,
however, these advanced tools are missing and much of the manipulation
must be done manual ly. The easiest way to ensure that general objects
can be manually manipulated Is to provide a general text editor that
can manipulate objects at a low level. .,

6.1.2 Many of the objects stored in the database are not structured
In ways that are Immediately legible. The Information In these
objects (as well as their attributes), however, must often be studied
by users; hence the need for a prettyprinting too (or set of tools)
that transforms database objects Into legible and understandable
formats. The prettyprinter may perform transformations that Include:

1) Binary to ASCII conversion
2) Indentation of Ada programs
3) Formatting of objects that contain linked lists
4) Formatting of history attributes

6.8.3 In order to execute Ada programs (including the MAPSE tools .
thenselves), It Is necessary to translate the programs from (high-
leve) Ada to a (lower-level) executable representation. It Is of
little Importance from the development standpoint (although it may be
Important from other standpoints) whether the translator that Is
provided is a compiler, an Interpreter, or any other type of
translator. -P

F

6.8.4 Debugging and testing Ada programs at a low level
representation (machine or assembly language level, for Instance)
defeats much of the purpose of progrmming In Ada In the first place.
Therefore, these facilities must be provided at the Ada source level
In a MAPSE. This may require KAPSE level support.

V.8.3. Criteria: Stoneman 2.B.16, 6.A.1

3F-28
9



- . ~, • ., .

2.B.16 Clearly, the MAPSE does not emphasize any particular

development methodolody at the expense of any other.

V.C. Library Requirements

V.C.1. Requirements: Stoneman 2.B.9, 4.A.8, 4.E.1, 6.C.2, 6.C.3, 6.C.4

2.8.9 An APSE supports the use of libraries of standard routines for
Incorporation In programs written for both host and target machines.

4.A.8 The database shall support the storage of Ada libraries In
source form . . .

4.E.1 . . . an APSE shall support the separate compilation features
of the [Ada] language.

6.C.2 A high-level I/0 package Is required [in a MAPSEI for each
target machine.

6.C.3 A physical file handling package Is required [In a MAPSE3 for

each target, If appropriate.

6.C.4 A file directory system Is required in a MAPSE) for each
target.

Y.C.2. Rationale: Stoneman 4.A.8, 6,C.1, 6.D (all), 7.B (all)

4.A.8 An APSE . . . may also support a form Eof Ada llbrary] where the
library object hasbeen pre-compiled for the host or a particular target
machine.

* 6.C.1 One or more high level I/0 packages are required for the host,
to extend or to provide alternatives for the package specified in the
language manual. Such packages will provide caijing conventions and
Implementations for standard device handling routines. Both host and
target resident packages are required as appropriate.

6.b.1 The requirements In 6.C.3 and 4 are not very specific as the
nature of the target environment Is project-dependent. However, some
file handling package Is required on the target to Implement the
access of target flies by the host and the exchange of files with the
host. These requirements are expressed separately; it may be on a
specific target that either the local operating system file directory
structure, or physical file handlers, or both will be utilized to meet
the requirements.

6.D.2 Clearly these proposals for MAPSE libraries represent a minimal
subset only.

7.8.1 It Is expected that the standard libraries provided with APSEs
will be oriented towards different application areas and /or
methodologies as addressed by each APSE.

3F-29
:.£. -..--



7.B.2 As one Initial example, there will be a requirement for a

numeric applications library.

V.C.3. Criteria: 4.E.1

4.E.1 The tools In an APSE shall support the development of programs

in the Ada language as defined by the Ada reference manual.

3F-30



m. m.. m...m.... . .... m......men

Upaed fompie18 etngo A

PA UER L I GUNIDRE

3G-I



Table of Contents

Schaoter Contents

INTRODUCTION CJ Foremen)

2 REFERENCES

3 GLOSSARY

4 Ads LANGUAGE CONSIDERATIONS CJ Foreman)

5 APSE CONSIDERATIONS CA Rudmik)

6 HARDwARE CONSIDERATIONS

7 PROCEDURAL CONSIDERATIONS

S STYLE CONSIDERATIONS CL Lindley and J Foreman)

Appendixes Contents

A CAIS SUMMAPY

B PECULIARITIES OF VALIDATED KAPSE'S

C LIST OF AUTOMATED TRANSPORT AIDS

*D CASE STUDIES

3G-2 __ I ,

."-.*. o



Chapter 1 I N T R 0 D U C T 0 N

11 Why was this document written? e

1.2 What are its specific uses?
• .. ' " " . - -

1,3 who Is a User of this document?

1,4 who Is NOT a User? 0

1.5 why all the fuss about Transportabillty?

1,6 How can we develop transportable Ada tools#
programs and systems?

1.7 Are there some now concepts and terms to learn?

1.9 what additional information Is available?

1.9 What does this quide Contain?

1.10 What Are the issues we're trying to address? S

1o11 Wrat Is the background of CAIS, KIT, KITIA, *o?

3G-3

** . .- .-•.

. / .... .. ... ..... ... :...,... .. .. . .. . ... ... ..- . . ....... . .-. .. . .. ... . ... ...- ...



Chapter 4 A d a L A N G U A G E C O N S 1 D0 R A ?I 0 N 5

4.1 Representation Specifications

s How they assist transportability
, How they hinder transportability
* Locatinq them In programs
•Effects on efficiency
* Alternatives

4.2 Pragmas

• Language-defined Pragmas
* Iitlementation-defined pragmas

1* Locating pragmas in programs
* Alternatives

4.3 Use of Standard Types

o Irplementatlon-deflned .
. Possible problems
. Locatino usage in programs
* Definina portable types
* Fixed point definitions
* Array definitions

4,4 Efficiency Considerations

, Differences In computers and APSEvs
, Differences In optimization
* Measuring efficiency
, Program modification
* Run-time checks

4.5 Attributes

* Usefulness in developing portable programs
, Relationship to Package SYSTEM

4,6 Unchecked Programming

, Dangers
, Locatinq unchecked programming in programs

. 4,7 Package STANDARD

- Care with type definitions
* Locatinq use of particular types
- Package SYSTEM

4.3 Parameter Passing Issues

409 Use of Ada 1/O

4.10 Various Pragmatics (see Herb Willman's paper in NOSC TD 509)

4o11 Appendix F of Ada LRM : A Discussion
3G-4

-o° . . . . ~ ~ ~~~ ~ . . . . . ° o ° -. .•- . ,.'

- -. '.... ,* -.. . % . °% .. -. . ,.,.. . , . ..° . , ... . . . . . ... . . . . ' .. _.. ., . -_



S

Chapter S A P S E C 0 N SI D E R A T I N S

5.1 The CA1S € Common APSE Interface Set )

5,2 APSE, MAPSE, KAPSE Extenslons 0

S.3 Libraries

5.4 Porting Programs# Tool Sets, and Systems

5.5 Dots Transport0

5.6 1/O Statements

5,7 Measuring and Tuning a Ported Program

5.8 Command Lanquages on Different APSEs

5.9 Security on Different APSEs

5.10 Debugging Features on Different APSEs

5,11 Addressing the Host/Target interface

5,12 Use of Other Languages

S513 Inter-Tool Protocol

3G-5



Chapter6 H AR D WAR E CO0NS3I1D ER A TIO NS

much of the following list of topics was obtained
from Reference Me) Some topics are germane to

a- this document# while others may not bel all should
aprobably be-given some consideration, As an approach,
aany relevant topic could be discussed as follows: t

am

-- 6.3O Internal Clock -

6.3,1 Statement of Problem
6,3.2 Implications

Cm 643.3 Solution
6,3e4 Associated Transport Aids

*Topics for Consideration Include:

cm * Character set differences (internal, tape# card#
=a and collating sequence)

am

we * Internal clock

mm * Com~puter speed

*Memory size
am

no Byte ordering

cc * Peripherals (number and type)
am

cm Sense devices (swithes, lights)
am

am * Printer speed and line size

mc, Number representations (negative/positive.
am floating point, sizes)

cc * Internal vs external number forms

cm * Interrupts (types, mechanises, priorities)-
:a

cm * Boundary allignment

am Rounding

mm , Architectures (micros, pipeline# array processor#
cc virtual system. Ada computer)

a.

am *Sizes (words, characters)

*Input/Output (operations, data formats, unique.*-.
external devices)

cc Memory management

me, Terminal types

3G-6

. . . . . .- . - -.-. . -.- -.-. .-.-



Ch&vter 7 P RO0CE DU R AL CO0NS5I1D 9R A T 10N

7.1 Transport Media

*Cards
*Tape
*Disk
*Data Link

7.2 Data Transter

*files
*Data Bases
*Node Structures
*CAIS Considerations
*Tools which assist
*Networking

7.3 Program Representation Transfer

*Source Representation
*DIANA Car equivalent)
*Cther

7.4 Levels of Software Transfer

*Individual Program or Tool
*Tool Set
*System

7.5 Documentation Requirements Reflecting Software Port

* modifications required because of program change
* Porting the documents themselves
.Tools for assistance

0

7.6 Configuration Control Issues

7.7 Modifying Ported Software

*7.6 Testing Ported Software

*7,9 When and Now to Re-WrIte Code

7.10) Documentation Requirements Unique to Portable Software

7.11 External Code of Data Files
3G-7

1-7 7



7-

Chapter 6 3 T Y L E C 0 N S 1 D E R A T 1 0 N 5

-- Our objective is NOT to write a style guide. However.
- we must discuss style Issues that bear on IT. And
- itf we discuss ONLY IT-related style issues, then how

-- do we keep them in context ???
*am

am Thus I propose toat we DO write a short style guide*
-- Y Presenting A STYLE (not claiming it to be the
-- ULTIMATE STYLE) and by embedding our IT-related discussion
m- withln the context of that style, We right derive this
00 style by examining References (61, [), 181, and others.

m. The IT.-relmted things might include:

-- , modularity

mm . Isolation of system-dependent code and data

mm * Visibility of system-dependent code and data

-- * Naming conventions (for visibility and automation)
m

-m * Documentation conventions
mm

. Use of Ada as PCL

-- * Use of other design expressions
am

* Typing
Om

0- . Use of comments
J

am * Development of portable version before system-
m- dependent version

m .a

-m others T B D

3G-8

36-8 ""' '

*; *:-.* . " .. . . .. ' * . .- . . .
* **-.. . . . . . . . . . . . . . . . . . .. i*



CHARTER

of the

COMPUANCE WORKING GROUP

of the KIT/KITIA

Scope
-.•

The compliance working group of the KIT and KITIA has been formed
to address topics in two major areas. Stated in very general
terms, the first is the adherence of KIT/KITIA products to any
stated or written set of objectives. This includes the adherence
of the CAIS to the Requirements and Criteria document and probably
other things such as the adherence of the Requirements and Criteria
document to the stated objectives of I and T, or CAIS adherence to
ANSI or other standards. The second topic that we will address is
the adherence of any implementation, design, or whatever to any
products generated by the KIT/KITIA. While this is a general
statement that says we will be addressing the technology needed to
measure adherence of a CAIS implementation to specifications, it
also indicates that we will be concerned with alternative designs
of the CAIS and the way in which they satisfy the Requirements and
Criteria documentt.

The scope of the working group is intended to be sufficiently
general so as to allow us to address technical issues related to _
conformance. That is, we will not specifically be measuring
whether a specific implementation of the CAIS adheres to the
specifications, but rather are concerned with the issues related to"---
validation of a CAIS. Further, we are concerned with developing
techniques related to compliance, and assessment procedures.

The working group considers itself to be primarily a technical body
as opposed to addressing policy as it relates to compliance. While
a technical slant is an explicit goal and direction, often the
results of technical considerations imply policy recommendations.

3H-.1



DRAFT KIT/KITIA GLOSSARY
for words cited in:

RAC 1984 Feb 17 0

CAIS 1.1 1983 Sep 30

i KEY

• - Words followed by * are defined by the CAIS document in terms of the CAIS

design.

[C] - Term is cited in the CAIS document. -.

[R] - Term is cited in the RAC document.

[C/R] - Term is cited in the CAIS and RAC documents.

-- - - - - -- - - - - -- - - - -

TERMS

absolute path* [C] -A path starting at a top-level node is called an "absolute"

path.

access control [C] - (TCSEC)

[discretionary access control] - A means of restricting access to objects

based on the identity of subjects and/or groups to which they belong. The

controls are discretionary in the sense that a subject with a certain access

permission is capable of passing that permission (perhaps indirectly) on to any

other subject.

[mandatory access control] - A means of restricting access to objects based on

the sensitivity (as represented by a label) of the information contained in the

objects and the formal authorization (i.e. clearance) of subjects to access

information of such sensitivity.

Ada Programming Support Environment (APSE) [C/R] - -

(UK Ada Study) - (STONEMAN). The purpose of an APSE is to support the
development and maintenance of Ada applications software throughout its life

cycle, with particular emphasis on software for embedded computer applications.
The principal features are the database, the interface and the toolset. It is

structured in levels: 31-1

.... . . .. ..................,....,...... .. . .. . .: . :. ..:.. .,... . .. .'.. .-. ,.



level 0: hardware and host software as appropriate

level 1: KAPSE

level 2: MAPSE

level 3: APSEs which are constructed by extensions of the MAPSE to

provide fuller support for particular applications or methodologies.

attribute* [C/R] - A named value associated with a node or a relationship.

base* [C] - A path can start at a known (not necessarily top-level) node and

follow a sequence of relationships to a desired node. This is a "relative" path

and the known starting node is called the "base".

canonical name [R] - (RAC) the name unique to an object which is guaranteed by

RAC to exist.

content(s) [C] - Data, characters, words, or other units which are held

specifically addressable in some storage unit; (CAIS) a distinguished attribute

of a node.

criterion ER] - (RAC) design objective.

current process* [C] - The currently executing process making the call to a CAIS

operation. It defines the context in which the parameters are to be

interpreted.

default relation* C] - Many CAIS operations allow the user to omit the relation

name when referring to a relationship, defaulting it to "DOT*. DOT is therefore

referred to as the default relation name.

device [C/R) - a piece of equipment or a mechanism designed to serve a special

purpose or perform a special function.

device node* [C] - A node whose content represents a logical or physical device.

file CC] (LRM 14.1.1) [Ada external file] - Values input from the external

environment of the program, or output to the environment, are considered to

occupy external files. An external file can be anything external to the program

that can produce a value to be read or receive a value to be written.

31-2



~ r r r r - r - r. .. -..- ,

V S

file node* [C] - A node whose content is an Ada external file.

interface [Cl] (DACS)

(1) A shared boundary. "

(2) the set of data passed between two or more programs or segments of
programs, and the assumptions made by each program about how the .:

other(s) operate.

(3) The common boundary between software modules, between hardware .

devices, or between hardware and software modules.

(4) When applied to a module, that set of assumptions made concerning

the module by the remaining program or system in which it appears.

Modules have control, data, and services interfaces.

An interface can be represented by means of Ada package syntax and

semantics.

interoperability [C/R] - (K/K) Interoperability is the ability of APSEs to - S

exchange data base objects and their relationships in forms usable by tools and

user programs without conversion. Interoperability is measured in the degree to
which this exchange can be accomplished without conversion.

.-

KAPSE [R] - (UK Ada Study) That level of an APSE which provides database

communication and runtime support functions to enable the execution of an Ada
program (including a MAPSE tool) and which presents a machine-independent ::--

portability interface.

MAPSE [R) - (UK Ada Study, STONEMAN) That level of an APSE which provides a

minimal set of tools, written in Ada and supported by the KAPSE, which are both

necessary and sufficient for the development and continuing support of Ada
programs. The term is used in this [UK] study to mean not a strictly minimal

set, but a set with which a user can happily work.

node* [C]- representation within the CAIS of an entity relevant to the APSE.

node handle* [C] - a reference to CAIS nodes that is internal to a process.

object CR) - (RAC) separately identifiable collection of data (treated as an
undefined term explained by its properties).

path* [C) - A sequence of relationships connecting one node to another.
31-3 "

;.. . . .. .. .. . ,. . . .- . . .. ..- .. .. .. .. . . .. . . .. ... .. ... . *. . . *. .. . .- ..- . -. . . - :



pathname* [C] - Starting from a given node, a path is followed by traversing a

sequence of relationships until the desired node is reached. The "pathname" for

this path is made up of the concatenation of the denotations of the traversed

* relationships in the same order in which they are encountered.

pragmatics [C/R] - [implementation pragmatics] Constraints imposed by an

implementation or use that are not defined by the syntax or semantics.

* primary path [C] -

primary relationship* [C] - When a node is created, a primary relationship must

be initially established from some other node, called its parent node.

process* [C/R] - the execution of an Ada program including all its tasks , -

process node* [C] - A node whose content represents a CAIS process.

program [R] - (LRM) A program is composed of a number of compilation units, one

of which is a subprogram called the main program, which may invoke subprograms

* declared in the other compilation units of the program.

relation [C] -

* relation name* [C] -

relationship* [C/R] -

relationship key* [C] -

secondary relationship* [C] - Secondary relationships are arbitrary connections

which may be established between two existing nodes.

*. security [R] -

source node* [C] - Node from which a relationship emanates.

structural node* [C] - A node without content. It is used to structure other

nodes.
31-4



target node* [C] - Node to which a relationship leads.

terminal [R]-

tool [C/R]- (IEEE) [software tool]- A computer program used to help develop,

test, analyze, or maintain another computer program or its documentation; for

example, automated design tool, compiler, test tool, maintenance tool. -

top-level node* [C] - A node that has no parent relationship.

transportability [C/RI - (K/K) - Transportability of an APSE tool is ability of

the tool to be installed on a different CAIS implementation; the tool must

perform with the same functionality in both APSEs. Transportability is measured

in the degree to which this installation can be accomplished without

reprogramming. Portability dnd transferability are commonly used synonyms.

virtual terminal [C] - (Davies) a conceptual terminal which is defined as a

standard for the purpose of uniform handling of a variety of actual terminals.

user [RI

REFERENCES

ANDIP - Definition taken from the American National Dictionary for Information

Processing, X3/TR-1-77, September 1977, American National Standards Committee,

X3 - Computers and Information Processing

CAIS - Definition taken from the Draft Specification of the Common APSE

Interface Set (CAIS), Version 1.1, 30 September 1983, KIT/KITIA CAIS Working

Group for the Ada Joint Program Office.

DACS - Definition taken from the DACS Glossary, a Bibliography of Software
Engineering Terms, GLOS-1, October 1979, Data & Analysis Center for Software.

Davies - Definition taken from Davies, D. W., Barber, D. L. A., Price, W. L.,

and Solomionides, C. M., "Computer Networks and Their Protocols," John Wiley &

Sons, New York (1979) 31-5



IEEE - Definition taken from the IEEE Standard Glossary of Software Engineering
Terminology, ANSI/IEEE Std 729-1983.

ISO - Definition was identified by the source as developed by Technical
Committee 97, (Information Systems), Subcommittee 1, (Vocabulary) of the
International Organization for Standardization.

K/K - Definition taken from the KITIA Public Report, Volume I, 1 April 1982.

LRM - Definition taken from the Reference Manual for the Ada Programming
Language, ANSI/MIL-STD-1815A-1983, Feb. 17, 1983, United States Department of

Defense.

PR#1 - KIT/KITIA Public Report No. 1...

STONEMAN - Requirements for Ada Programming Support Environments "STONEMANN,
Department of Defense, Feb. 1980.

TCSEC - Department of Defense Trusted Computer System Evaluation Criteria,
Department of Defense Computer Security Center, CSC-STD-001-83, 15 August 1983.

TDS - Tactical Data Systems Glossary, MAT-09Y, 1976.

UK Ada Study - Definition taken from the UnitedKingdom Ada Study Final . -

Technical Report, Volume I, London, Department of Industry, 1981.

31-6

7. - .

* .**.:



Ada ENVIRONMENTS AS GFE IS HARMFUL

D. E. Wrege

Control Data Corp.

Introduction

Both the Army and the Navy put forth relatively stringent
policies regarding the use of Ada Programming Support
Environments (APSEs) at the Dallas AdaTEC meeting. Of the policy
statements put forth, the Navy's is not only the most stringent,,
but also is documented in the Ada banguage System/Navy (ALS/N)
RFI. Therefore this paper will specifically address the Navy
policy as set forth in that document. The intent here is not so
much to cast stones at the Navy, but rather to point out why
policies similar to those so successful In the Vast, such as
those relating to MTASS, will have a disastrous effect on the Ada
Initiative,

Quoting from the System Specification for the AbS/N draft of °
15 June 1983:

"3.1.6.6 PAPSE Distribution Concepts

The distribution of the MAPSE category software will
be consistent with existing PKS 408 distribution policies
as currently implemented for MTASS distribution. The major
concepts are:

a. The software will only be delivered to those sites
directly involved In the development of embedded
systems for tho Department of Defense.

b. The user site will not be able to modify the
software because neither source text nor source
listings will be delivered.

c. All user sites will receive the same software for a
specific host computer; the site may tailor the
software to project requirements by either deleting
delivered tools or adding new project-specific
tools."

No Compilers

The DoD has seen to the design and definition of Ada. They
have copywrited the name to ensure that Ada is Ada. They have
developed a validation facility and encouraged the world
community to develop Ada capabilities. Tnere are even a large
number of Independent efforts underway, that are being .
underwritten by private funds. And now, suddenly, these
developers are being told that the government, and In particular
the Navy, is not a marketplace for these compilers. The reason

UJ-1

" .." ". . ,' . .' ." .-.. .- . ..........-'............................,...........'...,..........,° ... ,,..........'-,......,....



.e T t° R.

for the independent development of Ada compilers is for use in
building systems for the government, or to sell computers to -

companies that develop systems for the government. If industry
is developing compilers only for themselves, they will surely
throw out the difficult parts to implement and not attempt
validation, thereby not having Ada. The DoD has guaranteed, by
the complexity of the language, that the only possible motivation
for implementing full Ada is because the DoD requires it for
developing software under government contract. But a GFE policy
disallows the use of compilers not provided by the contracting
agency. Thus, independently developed compilers will exist only
to the extent that portions of the government do NOT follow GFE
policies like the Navy has put forth.

The above stated Navy policy is clearly contrary to what the
AJPO has been attempting to do. why establish an Ada Validation
Office (AVO) If developers are forced to use a GFE compiler? The
validation suite then would be merely an acceptance test for
government sponsored compilers. This was clearly NOT the intent
of the AVO when it was established. Actually, If all of the
service components had a GFE policy similar to the Navy's, the

goals of transportability and interoperability between APSEs
makes sense only from the standpoint of sharing tools between
government components. It is probably cheaper to just convert
the non-redundant tools than to, for example, retrofit both an
ALS and an AIE and all of their tools to the CAIS. -

No Environments

There are absolutely no incentives for developing
independent rvironments that are compatible with the ALS/N
assuming the strict GFE policy stated. [Except perhaps by
chance.] The Navy policy disallows even the transporting of ALS/N
tools to an independently developed APSE since neither source
code nor listings will be made available. [Another good reason
to make all of these tools portable.)

But why should the Navy care? This policy has worked well .

with MTASS. They have rehosted it on almost all reasonable
systems. They should be able to do it again with the ALS/N.

*' WRONG! The rehosting of MASS was possible because the MTASS
tools were written in FORTRAN. FORTRAN compilers were readily
available on virtually all computer systems. ALS and ALS/N tools

are written in Ada and thus cannot simply be transported to a new

host. Ada compilers are obviously not widely available and will
not likely become so if a strict GFE policy is followed. YTASS

tools also depend upon a set of relatively simple Common
interface Routines (CIR) for operating system support. The KAPSE
or even the CAIS is tar more complex than the CIR. Therefore the

Navy must not only spend big bucks to retarget their Ada compiler
to the host machine but also may need to modify the host

"' operating system to implement the KAPSE/CAIS.

. .. . . . . . . . ......



A Possible Solution

There have been legitimate situations which encouraged the
strict GFE policy followed by the Navy. Foremost is the fact
that all too often the developer of a system used tools that were
required for the life cycle maintenance of the system, and for
one reason or another these tools couldn't be run at the
maintenance facility. The result was either an undesired
dependence on the developer (sole source at any cost) or a
premature shortening of the useful life of the system. Even when
the tool could be transported to the maintenance facility, that
tool whould have to be maintained. Eventually the maintenance
organization wpi;d be spending an Increasing proportion of its
res6urces maintaining tools rather than weapon systems. One
solution, and the one adopted, was for the Navy to provide the
tools for development and to require that they be used. In this
way the Navy has ownership of the tools and can guarantee that
they will be able to maintain the weapons system software after
delivery.

An environment is defined by Its tools. The project, such
as a weapons system, is defined by Its data, i.e. sources,
binaries, documentation, etc., and the operability of the
environment tools on that data. Therefore the system can be
transmitted properly to the maintenance activity provided that
(1) the database can be moved to the maintainer's APSE, and (2)
the APSE toolset of the maintainer can operate on that database
in all manners necessary to continue operation and maintenance of . -
the system. Clearly this can be accomplished using a strictly

- GFE environment. But consider 'an alternative policy which
requires the establishing of a maintenance Daseline by the
contractor through: -

1. movino only the non-derivable database objects. This means
all sources, documentation, testing files, etc. but not, for
example, binaries that can be derived from the source by
using a compiler.

2. reconstructing the system using the tools of the maintenance
APSE.

3. retesting the system using the tools of the maintenance APSE-.-"
If required.

The ability to perform the above successfully would define
"compatibility" of a developer's APSE with a maintainer's APSE.

To encourage contractor/vendor investment in environments,
and to reduce potential risk in the transmittal of systems, tools
used in the maintenance APSE should be made available to those
contractor/vendors. These tools should be placed in the public
domain, and made as transportable as possible. They should be
written In a common language, Ada, and depend on only a standard

* set of virtual operating system interfaces (e.g. the CAIS).

3J-3

o , . . o*

- * .* * -.-. * *.*. .* *°.. *".. .



[But now we are on familiar ground.] In this way It should
be fairly easy for contractors to start with a baseline APSE
which is compatible with the government APSE. Note that the
tools are NOT GFE. It is the contractor/verrdor's responsibility
to convert and maintain their version of the tools. They can
improve on them, but will be deterred from evolving them to the
point where they are no longer "compatiole" with the maintaining
APSE.

--4



.

KITIA POLICY RECOMMENDATIONS

The KITIA recommends against adoption by any DoD component of a
policy requiring contractors to use a specific APSE for development
work. We believe such a policy will seriously inhibit independent
development of APSEs and Ada tools and is therefore detrimental to the
goals of the Ada program.

The KITIA recommends an alternative policy based on transmittal
requirements. This policy will both allow the contractor to select the
development environment while satisfying the services' needs for a
stable operations and maintenance environment. A project is defined by
its data and the capability of the environment's tools to operate on
that data. A project may be successfully transmitted to the
maintenance activity provided that:

1. The project data can be moved to the maintenance APSE

2. The maintenance tool set can operate on that project data
as necessary for operation and maintenance of the system -

This policy requires such a transmittal of the system to the
maintenance APSE by the contractor.

A possible transmittal procedure under this policy is to:

1. Move only the non-derivable project data

2. Reconstruct the system using the maintenance tool set
0

3. Accept the system

In order to ensure that the movement of the data is feasible, and
that reconstruction results In a working system, the tools resident on
the maintenance APSE necessary for development must be transportable -
and available to the contractor. These goals are satisfied by S
implementing ddevelopment and maintenance tool sets using a common APSE
interface set.

3K-I
Z

• " ' " " " "-• .-" " '* " ,': - ,- .- *.". ." ."," .'''L .' ._''_. _.'''-'.L.''.-'._'-'.--..._'''._' .-.- 'V.-.'.•-... . . .'.. -''.-."' - .L



SECURITY REQUIREMENTS

fo r
Ada PROGRAMMING

SUPPORT REQUIREMENTS

David C. Pacterchik

* DRAFT

DRAFT 1/16/84 .

3L-1



Abstract

This document addresses security requirements for Ada Programing
Support Environments (APSEs) intended to hold classified
information, and how the Common APSE Interface Set (CAIS) currently
under development might accomodate them. A review is given of the -

initiatives, instructions, regulations and mandates which require a
secure APSE, together with the commn-sense rationales which
accompany them. Mandatory security requirements and their
relationship to classifications and clearances are presented, first
generally and then with specific reference to the APSE concept.
Finally, the concept of a working classification range is
considered, with attention paid to the distinction between
requirements for trusted tools and requirements for the underlying
Kernel APSE (lAPSE).

*UNIX is a trade/service mark of the Bell System.

DRAFT i 1/16/84

3L-2

. . . . -

. . . . . . . ..- "



7 7

TABLE OF OF CONTENTS0

Section

LIST OF ILLUSTRATIONS viii

1.0 INTRODUCTION

1.1 SCOPE OF DOCUMENT 1
1.*2 DOD-WIDE INITIATIVES,* INSTRUCTIONS AND MANDATES 1

1.2.1 The Ada Initiative 1
1.2.2 Mandates Regarding Trust 1
1.2.3 The APSE Onion Skin 2

1.3 IMPACTS OF THE INITIATIVE ON PROJECT SPONSORS 2
1.4 HOLES IN THE APSE ONION SKIN 2 0

1.4.1 Consequences of Mandates Regarding Trust 2
1.4.2 The APSE as a Genie in a Bottle 3
1.4.3 How Dangerous is the Genie? 3
1.4.4 The APSE as a Security Sieve 4
1.4.5 The Secure APSE: Hopes for Controlling the

Genie 5
1.4.6 A Few Words About Security and Integrity 5

1.5 ON PYRAMIDS AND THE NATURE OF REQUIREMENT 5

2.0 BASIC MANDATORY SECURITY REQUIREMENTS 7 A

2.1 CLASSIFICATIONS, COMPARTMENTS AND CLEARANCES 7

2.1.1 Classifications 7
2.1.2 Clearances 8
2.1.3 Clearances versus the Computational

Abstraction 8
2.1.4 Classification as Access Set Management 8
2.1.5 The Classification-Induced Lattice 9
2.1.6 Discretionary Access, Teams and Lattices 10
2.1.7 Blending Discretionary and Mandatory Access 11I

2.2 WHAT DOES THIS HAVE TO DO WITH AN APSE? 11

2.2.1 Mandates Regarding Trust, Again 11

2.3 AUDIT MECHANISMS 11

pDRAFT V 1/16/84

X1-3



TABLE OF CONTENTS

(Continued)

Secion fruJL

3.0 APSE SECURITY REQUIREMENTS 13

3.1 lAPSE FUNCTIONALITY 13

3.1.1 Hov APSE Functionality Determines lAPSE
Functionality 13

3.1.2 Functional Distinctions Betveen the KAPSE
and the APSE 15

3.1.3 Functionality Relegated to the lAPSE 15

3.2 KAPSE OPERATIONAL VIEW OF SECURITY 16

3.2.1 User Viev of Secure APSE / lAPSE Operation 16
3.2.2 Discretionary Considerations 17
3.2.3 Mandatory Considerations 18

3.3 lPSE REQUIREMENTS FROM [TCSEC] 20

3.3.1 lAPSE Discretionary Access Control ([TCSEC]
3.2.1.1) 20

3.3.2 lAPSE Object Reuse ([TCSEC] 3.2.1.2) 21 --

3.3.3 KAPSE Labels ([TCSEC] 3.2.1.3) 21
3.3.4 KAPSE Mandatory Access Control ([TCSEC]

3.2.1.4) 22
3.3.5 lAPSE Identification and Authentication

([TCSEC] 3.2.2.1) 23
3.3.6 lAPSE Auditing ([TCSEC] 3.2.2.2) 23

4.0 TRUSTED TOOL AND WORKING RANGE CONSIDERATIONS 24

4.1 SOME EXAMPLES 24
4.2 SOME RULES 26 -

4.2.1 Rules for the Working Level Attribute 26
4.2.2 Rules for The Security Range Attribute 26
4.2.3 Rules for the Working Range Attribute 27
4.2.4 Additional Rules Pertaining to Multilevel

Objects 29

5.0 SECURITY AND THE COHMN APSE INTER.FACE SET 31

5.1 PURPOSE AND SCOPE OF TBE CAIS 31 *

DRAFT Vi 1/16/84

3L-4

. . . . . . .



3 TABLE OF CONTENTS
(Concluded)

Sertion Ani

*5.1.1 The CAIS Node Model 31
5.1.2 Relationships, Relations, Contents and

Attributes 32
5.1.3 CAIS Process Command, Control and

Comunica tion 33

5.2 SECURITY CONSIDERATIONS IN THE CAIS 34

5.2.1 Signaling Betveen Processes 34
5.2.2 Data Sharing 36
5.2.3 Process Isolation 36
5.2.4 Attributes and Relationships 37
5.2.5 On Reality and Performance "Requirements" 37

REFERENCES 39

DISTRIBUTION LIST 41

0

DRAFT vii 1/ 16/84

L 3LX-5



LIST OF ILLUSTRATIONS

Fisture

1 Subject/Object Information Flow from Tool to Tool 30

DRAFT viii 1/16/84

XL-6



SECTION 1

INTRODUCTION0

1.1 Scope of Document

This document addresses the requirements for security in the Ada1
Programming Support Environment (APSE) intended for use by the
Department of Defense.

The requirements vhich are already in place on Ada and its mandated0
user community are first reviewed, with some view as to how they tie
together. A review of general mandatory security requirements, in
the context of an APSE, is then presented. Security !-equirements on
a multi-level secure APSE are then proposed. This is followed by a
discussion of security requirements for APSE tools.

1.2 DoD-Wide Initiatives, Instructions and Mandates

1.2.1 The Ads Initiative

The Department of Defense has issued an initiative [ADAINITI0
intended to reduce the life cycle costs associated with software
development, maintenance, and changes in target hardware. This
initiative is to be implemented, in part, through the use of a
standard high order language, namely Ada.

1.2.2 Mandates Rerardin2 Trust

Mandates exist within the DoD which call for computer-related
activities to be conducted in a reliable and non-compromising (which
this document will call "trusted" or "secure") fashion where
sensitive or critical DoD information is to be processed. Chief
among these are the instruction [5200.28], which provides the
general DoD ADP security mandates and [ 5200.1K] , which mandates the
need for classification management mechanisms (e.g. downgrading,
labeling and handling procedures). The requirement for
accreditation (the authorization and approval for an ADP system to
process sensitive or critical information in an operational
environment) may be viewed as the operational "bottom line" among
these requirements.

lAda is a registered trademark of the United States Department of
Defense Ada Joint Program Office (AJPO).

DRAFT 11/16/84

X1-7



I

1.2.3 The APSE Onion Skin 
:

In support of [ADAINIT], Ada encompasses not only a high-order
language, but also an Ada Programming Support Environment (APSE). -
The APSE provides for a wealth of programming tools which support
development, documentation, debugging, command-level user-system
interftce and configuration control. The requirements for the APSE
are spelled out in [STONEMAN].

The APSE is designed to be as host-independent as possible. It is
conceptually divided into major components which are often portrayed
graphically in approximately concentric fashion (hence the
descriptive term "onion skin"). It splits roughly into a
"derivable" tool set (which may contain application- or target-
dependent tools), the minimal toolset portion of the APSE (known as
the minimal APSE, or MAPSE) and a kernel APSE (KAPSE). The KAPSE is
the not necessarily an operating system (OS), but is the only
"host-like" portion of the APSE, interfacing the toolset to the
underlying host software and hardware.

1.3 Impacts of the Initiative on Project Sponsors

As the reader should be aware, each organization in the Department -
of Defense is required to implement [ADAINIT] as a way of meeting L
its own siftware development requirements for new and advanced-
development programs, particularly those involving embedded systems.
The Army has already contracted substantial work on an Ada Language
System (ALS) with extensions to support the NEBULA-architecture
Military Computer Family (MCF) together with the MCF Operating -
System (MCF/OS), which comes in several flavors. The Air Force has --

initiated a similar effort with the Ada Integrated Environment
(AlE). The Navy has come somewhat lately to this effort, but has
its own requirements for an Ada system, based in large part upon the
ALS effort [SOWALSN, SSPECALSNI. In specifying security-specific
APSE requirements, this document recognizes that, while [STONEMAN]
is currently the ultimate source of general APSE and lAPSE -

requirements, ALS, [CAIS] and [SSPECASNI provide an excellent model
(actually a "seta-implementation") of an APSE upon which to specify
security requirements.

1.4 Holes In the APSE Onion Skin

1.4.1 Conseouences of Mandates Retarding Trust

The collection of mandates noted in Section 1.2 above has a number
of implications for the way in which DoD conducts its computer-

DRAFT 2 1/16/84

3L-8

............ :



related activities. The DoD Computer Security Center (DoDCSEC) has
published "Trusted Computer System Evaluation Criteria" LTCSEC]
which address the question of determining the degree of

* "trustedness" of a computer system product. Accreditation is meant
as a statement of whether gL =n.~ a system is authorized to operate
in a given security mode on the information it processes (a pass-
fail decision). Ev.1aation is a statement of the degree (literally
a letter grading system, with refinements) of trust to enforce a
given policy or scheme which may be placed in that system.

* Evaluation may be performed il, abstracto; accreditation must (by
mandate of [5200.28i) be performed in1M

1.4.2 The APSE as a Genie in a Battle

* Trust must begin somewhere. The security model of Bell and LaPadula
[BELLAP], which is a basis for many of today's computer security
models and policies, has the "start trusted and stay trusted"
concept at its heart. Most trusted computing systems only ensure
the "incremental preservation" of trust, i.e., none of their actions
alter an existing state of trust. Such systems are trusted not

* under .arbitrary conditions, but rather when given that trust exists
inia&lly. Although this notion applies at the instruction cycle
level, its common sense is relevant even at the (much larger)
software life cycle level: the sooner a system begins operating in a
trusted mode, the less likely compromise is to occur.

Unfortunately, it is a common assumption that software development
systems (which include not just host hardware, but also the software
tools running on the hardware, the physical facility and all the
development personnel as well) are somehow inherently benign. An
effective software development system is often viewed as a trusted
servant. It may be likened to a bottled Genie, that may be invoked
to benignly do a client's bidding (develop the software that client -

* needs) at the mere flick of a cork. This is a dangerous assumption:
* trust does not begin here. It cannot be assumed that the Genie and

all its potential invokers are without evil intent. The recent,
real-life penetration of various government facilities in "War
Games" style is concrete proof of this.

1.4.3 Bow Dangerous is the genie?

* These comnts are directed at the concept of a "system" as
encompassing not only the target environment, but the host
(development) environment as well. Target systems themselves mainly
run the risk of data-related compromise. If the APSE does not
operate in a trusted manner, then both data-related and executien-

* related compromises can occur. Data-related compromises tend, to be
relatively non-repetitive. Also, they are subject to control by

DRAFT 3 1/16/84

XL-9

z, * ~



means of either personnel procedure (ranging up to action as drastic
as total physical isolation) or programming rigor (in the sense of
trusted computing bases, etc.).

The damage caused by execution-related compromises, by contrast, can
be much more far-ranging. Execution-related compromises might, forC
example, manifest themselves by the inclusion of Trojan horses in
the developed code. These would be basically undetectable as an
execution problem by the time the target system has* been deployed.
More subtly designed-in covert channel flows can also be included.
Of course, data may be designed into the developed programs
themselves (a likely possibility in programs which are very target-
specific). In this case, execution-related compromise can eventially
manifest itself on the target system as a highly-virulent data-
related compromise. _Ajj. software development system which is not
worthy of trust is a perfect place for execution-related compromises
to begin; such a Genie must be regarded as being capable (in the
wrong hands) of a great deal of evil.

Suppose that one begins with a safe, secure, trustworthy software
development system (e.g. a secure APSE). If one then progresses in
a trusted fashion to the target system, then the overall process of
project development (considered throughout its life cycle) has a
much higher assurance of being secure.-

1.4.4 The APSE as a Security Sieve

Currently, no ex1 licit provision for security or trust has been made
in the [STONEKAN] specification of the APSE, regardless of the
sensitivity of information processed by the APSE. It has been
argued that provision may be made by procedural methods, i.e. run
the APSE as an entirely closed shop, with every user cleared to see
all the information available from the APSE. This corresponds to
the notion of "System High" operation (see [5200.28]). In such an
event, even if the target system has been designed to be secure
(multi-level or otherwise), the untrusted steps in the target
software's life cycle still have = disappeared. The development
cycle is not clean with respect to security; the dirt is hidden
under an APSE.

For any typical DoD organization, the same security considerations
exist for program development as exist on the target system. The
organization may have a number of development facilities. There may
be a need to share these facilities between various projects. Some
of these projects may deal with Sensitive Compartmented Information
(SCI), and some may not. If they deal with SCI. the compartments
will likely be different from project to project.

DRAFT 4 1/16/84

XL-10



The user community for these facilities is typically of a broad .
nature, including both DoD personnel and contractors, potentially
not working on-site. As a result, the development facilities my
eventually need accreditation for Compartmented Mode and/or
operation as a multi-level secure system. To this end, security
requirements on the APSE, and on the KAPSE in particular, must be
considered. In view of this, there must be the capability for an
APSE that, in the rating system of [TCSECJ, is worthy of at least a
B2 rating. The interpretation of the criteria and requirements in

* [TCSEC] in the framework of an APSE will be considered in this
. document as appropriate.

1.4.5 The Secure APSE: Hopes for Controllina the Genie -

The APSE design does not lack for concepts of security. The CAIS
node-model database is hierarchically organized and makes extensive
use of access control lists on a node-by-node level; the
discretionary security of the APSE is thus mostly in place already.
Much of what will be said here refers to mandatory security -.
considerations (coming up with a scheme of clearances and
classifications) and how the existing APSE/KAPSE concepts can be
extended to embrace these considerations as well.

1.4.6 A Fey Words About Security and Zntetrit,

Given that the APSE is intended to provide for program development
integrity requirements. Integrity is in a conceptual sense the dual

of security, in that aggregation of information lowers its
collective integrity level in the same way that it raises its
collective security level.

DoD has no clearly-specified sanctions dealing with integrity
violations the way it does for security violations. However, one
can do considerable damage (e.g. corrupting or wiping out an entire
data base) by ignoring integrity considerations, whether willfully
or by simple negligence. Integrity is a natural concern which the
APSE concept is intended to address. Security should be just as
natural a concern, which the APSE should also address; it is a
requirement, but it is also good co~mon sense. This document will
address security from both points of view. '

1.5 On Pyramids and the Nature of Requirements

Just as security is a relative concept (nothing is absolutely
secure, just more secure or less secure by comparison to other
entities), so also are requirements, and, in particular,

DRAFT 5 1/16/84

3L-11

.. . .. .. .. .... . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-. .....-. ..•. . .- •• •o . , .• • ,. , , .. .. . . -f ''" .,



requirements for security, relative concepts. In addressing
security requirements on the APSE, this document aims to illustrate
the security elements that an APSE needs most to accomodate in order
to make the APSE as secure as it has to be.

While pyramids can be built entirely by humans (a documented fact),
this technique is excessively labor-intensive (also a documented
fact), and most modern construction requirements today would include
the provision for machines to aid the process (e.g. cranes and
hoists and trucks would be viewed as requirements). Similarly,
while an APSE can be made secure by operating., it as a dedicated
facility and using entirely manual and procedural workarounds to
security problems, such a technique is excessively labor- and cost-
intensive, and error-prone as well. The security requirements
described here are intended to describe what mst be done, in the
context of security, that still preserves the intent of the Ada
initiative.

-* . . 1

DRAFT 6 1/16/84

X1-12

...............

. . . . . . . . . . . . . . . . . .* ***. .*.*~. . . . . . . . . . . . . . .



SECTION 2

BASIC MANDATORY SECURITY REQUIREMENTS

There are certain deceptively simple considerations about security .
which arise from the paper-handling security world. Their origin is
in Executive Order [E0123561, which specifies the need for a system
of classification, and DoD Regulation [5200.11], which provides
explicit regulations governing handling of classified information,
irrespective of the medium or media in which the information is - ,
represented. The notion of mandatory security is intermittently .
developed il, abk~sact here, and then given more concrete substance
or instantiation in the real/paper and computer worlds.

The primary consideration is that a subject 3 (be it a person, a
process or the more generic "user") can have access to an --

informational object 0 only if S is authorized to have access to 0 -. R-
and is trusted enough that no action S takes would make 0 accessible
to an unauthorized subject S, i.e. 9 will not £gO, -aj-'-0.

What happens in the paper world, though, if 0 loses its value or
sensitivity? In this case, there may be a subject 9 who takes an -
"authorized" action (in accordance with appropriate policies) so
that go (or any other subject like S' who is authorized to know) now
does have access to 0. 8 in this case is said to have downtraded 0.
S is acting as a (System) kSeX i tj Officer. S is not considered to
have compromised 0. The important difference here is one of
authorization.

In the paper world, compromises are minimized by such procedures as
investigations, non-disclosure oaths and disciplinary actions, as
necessary. In a computer world, no clear analogies exist to these
procedures. The method for avoiding compromises in such systems is
to use highly formal techniques in developing the systems in the
first place. This insures that the systems will perform in a
trusted (in accordance with policy) and reliable manner.

2.1 Classifications, Compartments and Clearances

2.1.1 Classifications %;

The DoD has a well-defined scheme for dealing with information which
is considered sensitive. For the objects (actually, for their real-
or paper-world instantiations), there are classifications, and for
the subjects, there are clearances.-

DRAFT 7 1/16/84

3L-13

* * -- - -

, . -.. ° °. . . . .•.,°,.o........ ..........- -:.: .

_- . . .'. . .. - . , ..- _-. -. ." ." . ,-.- ... . o,..,, • .'. '. '._'. . ." . .. .- . . .. - . ,.' " . ... , . ... . .. .. . ,.°. * -. , .



For purposes of access restriction, an object is classified in a
general way into one of a number of levels of sensitivity. The
levels are mandated in [E012356] and further detailed in [5200.1R] . ..-

To apply more stringent restrictions (which afford tighter control
against the risk of compromise), an object may additionally be
restricted to one or more compartments within a classification. In
this case, more compartments mean more restrictions; as comon sense
might suggest, comprtmentation typically occurs more often at
higher sensitivity levels.

2.1.2 Clearances

It is important that a person who is granted access to information
(of some level of sensitivity) be determined to be worthy of trust
that s/he will not compromise that information. A person is cleared-
of objections, doubts or suspicion regarding his/her
trustworthiness. Generally, the granting of this clearance is based
on the result of an investigation of some intensity. A person is
cleared to have access to informational objects up to a certain
classification, and no higher.

2.1.3 Clearances versus the Comnutational Abstraction

In the computer world, however, a subject's clearance is a different - --

notion. Nothing directly corresponds to a real-world investigation
and clearance of a subject. In the small, subjects may be
investigated by doing rigorous validation and verification of the
code and entities which go into their being, either automatically or
manually; this is the raison d'etre behind the technology of trusted
computing. However, they are not cleared to a level in the way that
people are; they are "trusted", and "trustable" as well, not to
compromise (i.e. perform actions contrary to policy) information
irrespective of its level.

In the large, systems, as agglomerations of subjects, are subjects
themselves. However, accreditation (authority to process) of a
system and the granting of a clearance to a person are analogous in
only the most basic sense. A system is accredited based on its
precise physical and logical configuration and location, on the type
of information it is expected to handle, and on the assumption that
its "sensitive parts" are operating in a benign environment (an
assumption n=t made of a cleared person).

2.1.4 £lassification as Access Set Management

In either a paper- or computer-world framework, clearance has been
defined in terms of classification; the real world defines a

DRAIT 8 1/16/84

3-14

- -.



subject's clearance in terms of the classification of objects to ,
which s/he has access.

For a fixed universe of subjects and objects and a given type of 0
access A, the classification of an object imposes a restriction on
the set of subjects who can make access to it. In particular, every
object 0 has assigned to it a "mandatory access set" of subjects,
namely the set K (0) of subjects whose clearances dominate the
classification of O. The classification of 0 thus manifests itself
as a mandatory access restriction which assigns each object a set of 0_
subjects. The intersection of this set with the set DA(O) who are
to be granted discretionary access to 0 yields the set of subjects
who are cleared for access to, and have "need to know", 0. These
are the two conditions recognized in [5200.1] for granting access to
classified objects. -

In real-world practice, of course, keeping track of the effects of
classifications by means of mandatory access lists is much too
cumbersome, and at odds with classification assignment methodology.
Object marking, in particular, would be completely useless if done
by access set rather than by level. Nowever, the classification of ____

an object manifests itself naturally in a mandatory access list.

2.1.5 The Classification-Induced Lattice

The access sets described above can be given a mathematical
structure. They are subsets of the set A of all people who might
conceivably have access to information, and may be partially ordered
by the "reverse inclusion" relation. That is to say, an information
object 0 is considered at least as sensitive as an object 0 if the
access set for 0 is contained in the access set for 0'.

In this way, the access set structure embeds neatly into P(A), the
set of all subsets of A, ordered (as above) by reverse inclusion.
Suppose we have two elements of P(A), i.e. two subsets (say Li and
L2) of A. Then there is a greatest element of P(A) less than or
equal to the access set elements L and L2 (the greatest zower bound
of and I which is the sek-theoretic union of and J'i,
Similarly, there is a least element of P(A) greater than or equalto

. the access list elements L1 and L (the least upper bound of 1, and
' 2), which is the set-theoretic inttersection of L, and L2 .

The "top" of this structure is the empty set (corresponding to the
practical reality that no one person is authorized to know

DRAFT 9 1/16/84

31-15

~~~~~~~~~~~~~~~~.. ..........-.."--- " .... . "....-......- :."- ' ' -" '..'_ ..'..,.' .'.. .' .-...- , ' .*-.--, . .


• .r -

absolutely everything). The "bottom" of this structure is A
(corresponding to the practical reality that there is "information"
in the system that is not considered sensitive at all, such as the , ..-

current date). P(A) is thus a lattice.

If one alters A by the addition or removal of elements (potentially
authorized personnel) and gets A', P(W) still has a lattice
structure in the same way. Alternatively, suppose 1., is a proper
subset of L and both are subsets of A. Then the set, "between" L

and L inclusive (normally described as the intrva [L ,L I) also
form a lattice, with '"bottom" L and "top" L2 . il Fact, the
intersection of two such lattices [L11 L, 2 and [L,L 4] (the
collection of all orcess sets which are siZultaneously in [Li,L I
and in [L ,L4]), it it is non-empty, also forms a lattice. In
sunary, the lattices described above all fit together in a very
natural way, whether by restriction, extension or intersection.

The classification structure can thus be embedded into P(A) and
given a lattice structure in a mathematically natural way. Since
the determination of object classification is mandated by a security
doctrine or policy, contrrls associated with such access lists are
described as m access controls.

2.1.6 Discretionary Access. Teams and Lattices

The APSE has a concept of tems (see [STONEMANI, sections 3.E, 3.J,
4.A.7 and 4.A.9) which is elucidated in its ALS meta-implementation.
APSE teams are collections of users grouped together for some
purpose, generally related to the process. of software development.
A given user is identified to ALS by a two-part identification, PM

consisting of a team identification (many team ids are possible, -

since a user can be on many teams) and a user identification (which
is unique for a given user).

Tems are convenient sets of people which are subsets of A. Like
DoD classifications, APSE teams can also be given a mathematically
natural lattice structure by the same embedding process. In the
team case, the intersection of teams would represent the conjunction
of project roles.

For example, a given person might be on a software design team and
also be on the team dealing with a particular aspect of a project,
say, graphic display management. In this case, that person would
also be on the "intersection" team, namely the team doing the design
of the graphic display manager.

Since the composition of teams (or other access lists) is often more
a matter of organizational, need-to-know discretion than of mandated

DRAFT 10 1/16/84

3-16

• ",-.--..

,, ::....:--.

doctrine or policy, controls associated with such access lists are .

described as discretiona access controls.

2.1.7 Blendina Discretionary and Mandatory Access

The important point in the above formal discussion is quite simple.
There are two types of access control, namely mandatory (from
security policy) and discretionary (from security-oriented or
functionally oriented need-to-know). In a formal sense, these two
access concepts fit into a common, lattice-oriented framework. In a
practical, real-world sense, then, it is good common sense to apply
mandatory access controls the same way one applies discretionary
access controls.

2.2 What Does This Have To Do With An APSE?

2.2.1 Mandates Retardina Trust. Asain

The objects under the purview of an APSE in the current (mlti-level

classification) context thus require some management scheme. An
object ulms be classifiable, and its classification muAt be
manageable, in a trustworthy fashion. The classification
requirement means that there must be some scheme for labeling
objects (both internally and externally). The manageability
requirement means that there must be some scheme for changing and
tracking those objects' classifications and for mediating subjects'
access to objects based on classifications and clearances. That is
to say: in addition to the requirement for discretionary access
control (which is called out in [STONEMAN] 5.A.7), there is also a
requirement for mandatory access control in any secure lAPSE.

The access-list view of classifications is not considered here
purely as a random mental exercise in introductory computer security
technology. It is considered because the APSE data base is
implicitly very much organized around the access-list concept; some
of the clues concerning how to get from the mandate "the APSE needs
to be secure" to the conclusion "the APSE can accomodate security" -

are contained therein. Additional guidelines for what is needed for
an APSE to accomodate security are contained in [TCSECJ and will be
considered in the next section.

2.3 Audit Mechanisms ..

Because security is only relative and not absolute, it must be
assumed that in spite of system security precautions, compromises
may occur. If the information being processed by the APSE is

DRAFT 11 1/16/84 0

3-17

," ...-. -

-: .' . ::- . : .--: . . -..- " -. -. ., .-.. " . - .. - .. -,. ., "..-. .," .- .- • , .. . *. .., - ." - . * .. ' . - - .. " -

sensitive, potential compromises must be at least monitored, if not
actively suspected. As a result, a requirement exists that any
actions taken by any subject in the system which might have an
impact on the security of the system must be traceable. Therefore,
the APSE must have the ability to audit such actions at a level
below that of the tools; the appropriate place for this is the -

KAPSE.

The audit mechanisms which are called out in [STONEMAN] relate to
configuration control and object history, but are not specified in
detail. To the extent that security-related actions partially _.
comprise the history of an object, [STONEMAN] does address the
questions of audit mechanisms and protection, but it also states in
Section 5.5.2 that "the requirement (on the KAPSE] does not dictate
the manner in which protection is offered, nor that the protection
mechanism must actually be implemented within the lAPSE." Thus, the
security audit requirements, while they theoretically blend well
with the configuration audit requirements, are not formally spelled -
out in [STONEMAN]. The degree to which the security audit mechanism
integrates with the configuration audit mechanism is partly an
integrity issue and partly an implementation issue and as such shall
not be considered here. Again, however, as with the basic
classification, clearance and management issues described above,
guidelines for auditing are contained in [TCSEC] and will be
considered in the next section.

DRAFT 12 1/16/84

XL-18

...................................

........................... *

. :...%]''.

SECTION 3

APSE SECURITY REQUIREMENTS S

As mentioned previously, the basic security requirements for the .
APSE are those of a 52 system as defined in (TCSEC]. This section
interprets those requirements with respect to an APSE. The B2
requirements deal with mechanisms, assurance, and documentation. Of
these, only zubalaism. are considered here. Specifically, the 52
security mechanisms which the APSE must accomodate are related to "
the security policy and accountability requirements called for in •
sections 3.2.1 and 3.2.2 of [TCSEC], respectively.

In order to interpret these requirements in a concrete fashion, the
Softech ALS is used as an example, rather than the relatively less
concrete description of an APSE in [STONEMAN]. First, the basic
functionality of the ALS LAPSE is described in relation to the other
parts of the ALS. Next, an operational view of lAPSE security is
given. Finally, specific requirements for discretionary security,
object reuse, labels, mandatory security, identification and
authentication, and auditing are discussed. Wherever possible,
specific reference to requirements in [TCSEC] are made.

3.1 KAPSE Functionality

In order to put the functional purpose of the lAPSE in better
perspective, the LAPSE must be recognized to be a part of the APSE.
The functionality of the lAPSE is dictated by its purpose as part of
the APSE and by the functionality of the APSE. The functionality of
the APSE is thus considered first.

3.1.1 How APSE Functionality Determines lAPSE Functionality

The APSE is intended to provide the facilities necessary to bring a
software project from inception to completion in a time- and cost-
effective way. It is intended to "ease" the problems traditionally
associated with a project. These include (but may not be limited

- to) setting things up in the first place, design, development,
component integration, testing, evaluation and configuration
management throughout the life of a project. This is done through
the use of a standardized central data base, a standardized user-
system interface and a standardized set of tools. If the APSE is to
be multi-level secure, some tools may have to be trustable in the
sense of security. Section 4 of this paper will consider why this
is the case and how it may be done.

DRAFT 13 1/16/84 - -

3-19

*".. -.- 2--';
4 , .4 . '4

- rrnrr rr~r...r..-.-

The primary distinction between one instantiation of an APSE and
another is the APSE data base. It contains all the information
related to the software, including source, intermediate code,
executable code, environment descriptions, documentation, access
control, historical journal maintenance/auditing and configuration
control. The configuration control part would include maintence of
varying revisions of the same software, maintenance of variations of
types of software and of dependencies and associations between
various objects within the system.

The Ads Language System (ALS) effort initiated by Softech [ALS82]
designed an APSE data base which models the data base requirements
established in [STONEMAN) and modeled in [CAIS]. It is a
hierarchical data base constructed as a directed acyclic graph.
This is, in effect, a rooted tree structure which also allows for
links across branches as long as they create no direct ,d loops. At
the nodes are

1. a.ta (which will consist of offspring specifications if the
node is a directory node or element specifications if the
node is a variation header node),

2. arentae infrmain (both true, created-from nodes and
foster, share-oriented nodes),

3. attribute infrztion L (a great deal of which is
standardized and acts as a workable catch-all for other
required information), and

4. associations (a very few of which, in the soon-to-be-
described program library, are standardized).

The ALS meta-implementation of the APSE has the standard attributes
ode~type, category, creation_date, derivation, derivat ionucount,

moaccess, read, write, append, execute, via, attrchange, revision,
default_variation, purpose, availability, location, target,
acquired_data and compatibletargets. These serve to provide L

information about node identification, configuration control,
targeting, availability (in the sense of being on-line, off-line or
archived), node purpose and controlled accessibility.

Proraa librris are set up as special nodes. They implement the L
cntainer concept of Ads which recognizes that packages should be
used wherever possible to allow for easy and standard support of
higher-level programs. In support of this, the ALS has the standard . -
associations derived_from, depeudson, referenced_by and
acquiringcontainers which define program unit interdependencies. . "..

DRAFT 14 1/16/84

3L-20

- . - .. ._ ,.- .. . _

it is the function of the toolset to provide the higher-level
interface between the user of the APSE and the data base itself. We
now address the division of labor more closely.

3.1.2 Functional Distinctions Between the KAPSE and the APSE

A distinction is drawn in the APSE between:

1. those tools which are useful for some particular
applications or projects (these would include such things
as target-specific coup ilers /linkers. verification tools or
text formatters dedicated to project-specific
requirements),

2. those tools which are essential for all projects (editors,
data base maintainers, and so on) but which are host-
independent and required for creation of the tools
described above, known collectively as the jUi~ju APSE or
MPSS, and

3. those elements of the APSE which are not necessarily
included in the operating system (OS), but which are
required to provide the interface between the particular
operating system and the user together with the APSE -

components listed above (those host; or OS-dependent
elements are known collectively as the kernel APSE or
KAPSE.

The functional and operational considerations for the third of these
three classes are now examined.

3.1.3 Functionality Relegated to the :.SE

The [APSE is responsible, as noted above, for providing the host- or
OS-like interfaces to the rest of the APSE. The [APSE is also
responsible for providing the keystroke-level user-system interface

tand for providing the slightly higher-level comnd language
interface. In particular, the [APSE is responsible for mediating
access to al resources within the APSE.

When a user requests a service, it is the toolset that performs that
service. It knows nothing of the implementation details of the APSE
in question. To deal with this, the toolset invokes the [APSE -9
(which may in turn invoke the OS) to perform the basic primitives
required, such as changing an attribute, adding a node, altering
access, and so on.

DRAFT 15 1/16/84

XL-21

e...nts.....ow.........l...t...........or... ':

RD- R47 648 KERNEL RDA PROGRAMMING
SUPPORT ENVIRONMENT

(KAPE
4/

INTERFACE TERM PUBLIC REPORT VOLUME 4(U) NAVAL OCEAN
SYSTEMS CENTER SAN DIEGO CA P OBERNDORF 30 APR 84

UNCLRSSIFIED NOSC/TD-552-VOL-4 F/G 9/2 NL

/////lEll//l/I
EIIIIIIIIIIIIu
IIIIIIIIIIIIII
EIIIIIIIIIIIIu
IIIIIIIIIIIIhu
IIIIIIIIIIIIII

jj. 12.5__

I 11111- IIU68

MICROCOPY RESOLUTION TEST CHART

N4ATIONAL. BUREAU O STANDARDS -963SA

1-6.-.

'0

It is the function of the toolset to provide the higher-level •
interface between the user of the APSE and the data base itself. We "-
now address the division of labor more closely.

3.1.2 Functional Distinctions Between the LAPSE and the APSE

A distinction is drawn in the APSE between: .

1. those tools which are useful for some particular
applications or projects (these would include such things
as target-specific compilers/linkers, verification tools or '

text formatters dedicated to project-specific
requirements),

2. those tools which are essential for all projects (editors,

data base maintainers, and so on) but which are host-
independent and required for creation of the tools
described above, known collectively as the MiniMa APSE or -
MAPSE, and .

3. those elements of the APSE which are not necessarily
included in the operating system (OS), but which are
required to provide the interface between the particular
operating system and the user together with the APSE
components listed above (those bost- or 0S-dependent
elements are known collectively as the keuimsl APSE or
LAPSE.

The functional and operational considerations for the third of theseu three classes are nov examined.

3.1.3 Functionality Relegated to the LAPSE

The KAPSE is responsible, as noted above, for providing the host- or
0S-like interfaces to the rest of the APSE. The lAPSE is also
responsible for providing the keystroke-level user-system interface
and for providing the slightly higher-level command language S
interface. In particular, the lAPSE is responsible for mediating
access to all resources within the APSE.

Mhen a user requests a service, it is the toolset that performs that
service. It knows nothing of the implementation details of the APSE
in question. To deal with this, the toolset invokes the lAPSE .
(which may in turn invoke the OS) to perform the basic primitives
required, such as changing an attribute, adding a node, altering
access, and so on.

* .. %"

DRAFT 15 1/16/84

XL-21

..... -..-...--.. ,-... . .

.... .°. •.o. oo-. ,............... . .- . . ° °-

"4 . ,

It is thus the KAPSE's responsibility to know the "local customs"
which are dependent on the host and operating system. In
particular, it must know how the local access control is
implemented; it has, at a "bit, byte and element" level, the
responsibility for providing or denying access to an object in the
data base. In summary, if security is to be provided in an APSE,
the lAPSE must implement it.

3.2 KAPSE Operational View of Security

We now consider what security an APSE (and a lAPSE, in particular)
must provide. The types of security fall into the discretionary and
the non-discretionary (mandatory). For the purposes of the current
considerations, it is assumed that the access set concept is
understood.

3.2.1 User View of Secure APSE / KAPSE Oneration

The workings of a secure APSE, as a (human) user might view them,
can be modeled in a fairly straightforward manner. The brief
description which follows presents a usage model somewhat after the
fashion of Landwehr and Heitmeyer in their description of a security
model for military message systems in [LAND]. Terms which have -
special meaning in the context of this document are printed in upper -
case.

3.2.1.1 Eatablishing Access to the APSE. A human USER can gain
access to the APSE only by logging in. To log in, a USER presents a
USER.ID (user identification) and the system performs authentication,
using appropriate techniques.

3.2.1.2 Usage of the APSE. Following a successful authentication,
the USER may invoke TOOLS (or PROCESSES) to perform the general
functions provided in the APSE. By invoking TOOLS, the USER may
manipulate (viewing, modifying, referencing or otherwise making
access) OBJECTS at NODES. A TOOL may, in turn, invoke another TOOL
on the USER's behalf, to accomplish the desired objective.

3.2.1.3 Access to TOOLS. TOOLS (in the CAIS model) are
distinguished OBJECTS. A TOOL is at a NODE which specifies that the
OBJECT is to be invoked (executed) as a TOOL. The TOOLS a USER is
authorized to invoke depend on

1. The USERID of the USER and

2. the access and security_.level ATTRIBUTES (which must show
that the USER is authorized for access) of the NODES .'*

DRAFT 16 1/16184

3-22

,, -. -.,

.0

corresponding to those TOOLS. .

3.2.1.4 Access to OBJECTS. The OBJECTS a USER is authorized to

manipulate depend on

1. the USERID of the user, •

2. the securitylevel and vorkin&_rauge ATTRIBUTES of the
NODES corresponding to the USER,

3. the access, securitylevel and security range ATTIBUTES of
the NODES corresponding to the OBJECTS, and

4. the TOOL which is invoked to make access to the OBJECTS.

The APSE as a whole (and the lAPSE in particular) ust enforce the
security assertions implicit in the security requirements listed in
the rest of this section and in the next section. That is, the -........
KAPSE prevents the USER from invoking TOOLS in a way that would
contradict these assertions.

3.2.2 Discretionary Considerations

Discretionary security is implemented via access lists. They -

control which subjects (be they users, tools or other kinds of
subjects) are authorized to read, write, execute, append, or
otherwise make access to a given object.

It must be remembered that a (human) user's interface to an APSE
during a session is via the terminal. Terminals may not be
"trusted" because of their location. This necessitates a concept of
permitted working access, which depends upon both the user and the
terminal.

A user my be on many APSE teams at once. During the course of an
APSE terminal session, the user will have a "working team" (such
like a working directory). The user may change the working team as 0
long as the requested new team contains that user as a member. The
user has a session-independent worzkinga sAm of access lists, namely
the set of all access lists of which s/he is a member.

It say, however, be that there is information that is so
discretionarily sensitive that, for a particular terminal and 9
session, that access cannot be granted to it, even for a user on the
APSE access list. For instance, if several contractors have
proprietary software on a (possibly distributed) APSE, it may be
undesirable for even a DoD project manager to be able to examine
contractor X's software at contractor Y's site, regardless of the

DRAFT 17 1/16/84

3L-23

. ,--. * * . .- *'* % . . . % .. -

project manager's oversight responsibilities and consequent APSE-
encoded privileges. The terminal itself thus has a working range of
discretionary access,. and the user's effective working range during •
a particular session must be restricted by the terminal's working
range. Discretionary access is granted o2ny if both the user and
the terminal which mediates his/her access have the necessary 71
discretionary access privileges.

Discretionary access privileges must be set up, set, reviewed and
reset, sometimes in ways the creator of a given object has no
privilege to effect. This may happen because the creator of the
object is no longer connected with the project, or has changed
responsibilities and is no longer responsible for the disposition of
the object in question. In such events, a s administrator is
responsible for these tasks in an ALS. Such a privileged user must
exist to manage discretionary security.

It is the KAPSE which is responsible for validating, permitting and
effecting the requested type of access to an object. The KAPSE must
have cognizance of ALL the entities in the information flow path.
This includes the terminal. Hence, it is the KAPSE that must know,
adjust and report (if necessary) the working level, in addition to

- . checking for legal access.

3.2.3 Mandatory Considerations J

Mandatory security shares many attributes with discretionary

security when considered from the point of view of access lists.
The general character of the considerations for mandatory security
in the KAPSE is much the same as that for discretionary security. .-
ules for mandatory security are set by policy (which is independent
of the individual object under consideration) rather than by need-
to-know considerations.

For a fixed subject, c-rating through a fixed, specific chain of
tools, the validity of an access is dependent upon the type of
access and the classification of the object, rather than upon the
type of access and the identity of the object. That is, for a given
(fixed) type of access, the "access potential" will be the same for
any two objects at precisely the same classification level. This
distinguishes mandatory security from discretionary security. The
only way to alter this from access attempt to access attempt is to
change the classification of the object. Only a certain type of
subject, namely a Syste Security Office, (SSO) is authorized and
trusted to do this arbitrarily. In a secure system, it may in fact
be appropriate for the SSO role to be filled by the System
Administrator as well. Conceptually, SSOs are required in the APSE
to make mandatory security workable,

DIt 18 1/16/84

3-24 I

• . ' .'. .. .'. '. " '. .' . ." . * . . ". . " . " . . .* . , "* - ' * . -. . . . , . . . ,. . . . ,. . ' -.. . ,|
"-- : -.::,':'..: - "' .""" . """- ,"" .". ." ." " ." , , , - , ".~ * . ~."'- . . " " ." , ".""''..-..",." -

There must be a working level of discretionary access for a user at
a terminal which answers the question "what does this user have
access to now?". There vust also be a working level of security or
clearance for that user at that terminal. Again, this level may
change within constraints applied (at a minimum) both on the
terminal and on the user. The rules for working levels are
described later in this paper. .

The extent (interval) in the lattice over which the system permits
the working level of an APSE entity (whether user, tool, or object)
to range will be called the working rane. The concept of a working
range in an APSE is a useful one. Many APSE tools may have to make
access to information widely scattered through the APSE data base.
That information may be very closely associated with information of
a different classification. Unnecessary downgrading will be avoided
if some mechanism exists to respect the different classifications of
these associated pieces of information. The application of the
working range concept to address the unnecessary downgrading problem
will be discussed at somewhat greater length in the next section. P

Except for the working team, it is generally unnecessary to describe
to the APSE user his/her current discretionary access level. The
contrary is true about mandatory access (security) level. Because
it is mandated by policy, the working level is always well-defined.
It is interpreted by human users who must act accordingly when
dealing with classified data. Knowledge of the working level is
necessary; because the level is simply described (in comparison to
discretionary access level), it is practical to present.

When dealing with untrusted tools, a user should be able to reliably
determine the level at which s/he is working. Since the KAPSE
provides the user the interface to the rest of the system, it is the
responsibility of the lAPSE to provide this information to the user
via a "trusted path" that can be invoked by the user in a known way.

The same argument which concludes that the [APSE must provide the
discretionary security for an APSE also concludes that the [APSE _
must provide the mandatory security for an APSE. It should also be
stated, however, that access to an object by a subject can only be
granted if both discretionary n1 mandatory access constraints are

i satisfied.

As was noted at the end of Section 2, the "relativity" principle of
security (that is, compromises are theoretically possible) mandates
the auditing of events or actions in the APSE which might have an
impact on the security of the APSE. Essentially, anythin& which has
an impact on the life cycle of an object (creation, destruction,
reading, writing, appending, attribute and association modification)

DRAFT 19 1/16/84

31-25

• ° , , o • - ° . ° , - . . - O.o ° - - , °, o . . ., . ,o ° . , . "... ..%. . . .• " ° , o

might have impact on the security of the APSE. Hence any such
events or actions must be audited; what was done, who did it and
when are the critical details of these events or actions. This
requirement is called out in section 3.2.2.2 of [TCSEC].

3.3 KAPSE Requirements From (TCSEC)
The B2 security requirements for a KAPSE as called out in (TCSEC]

are now considered, on a point-by-point basis.

3.3.1 lAPSE Discretionary Access Control ([TCSECI 3.2.1.1)

For a B2 system, [TCSEC] calls for access controls which are capable
of including and excluding access to an an object to the granularity
of a single user. As noted in a previous section, the APSE does
have a concept of access control mandated in [STONEMAN], and the ALS
meta-implementation of this is the set of access list attributes
associated with every node. Thus, the B2 requirements for
discretionary access controls are met by the ALS without
modification. Access lists are directed toward meeting the needs
for access control (albeit discretionary in the ALS met-
implementation) at the object level and for project team
recognition. A typical access list in an ALS might in fact be a
term, and every user is on some collection of teams, to one of which
s/he defaults when initiating a session.

In the ALS, there are seven (7) access lists associated with each
node/object. These are

1. no access: anyone on this list is automatically denied J
access of any sort to the object in question.

2. read: aryone on this list can read from the object
in question.

3. write: anyone on this list can write to the object in
question.

4. append: anyone on this list can write to the end of
the object in question.

5. attrchange: anyone on this list can change the node/object
attributes (subject to additional controls).

6. execute: anyone on this list can execute the object.

.4

DRAFT 20 1/16/84

3-26

.
°° ,. ,'%'% .-'°.'.° -°.. ." .'.. .".., °° .% . •. ., . .. ''',.° ."°.°"°'.°°. °°" . °"° 'o°o °".. ,".o -" .',%t°° .. % °. '° ° -° " °% .. ° .° ° _2'

(0

7. via: any L921 (which, recall, can act as a subject)

on this list has access to the object. This
is for special nodes.

The access controls that are described here are also geared to
proper maintenance of the APSE as a programming system in the more
"traditional" sense. The concept of Program Libraries (PLs) mst be 9
well-supported by the system. An arbitrary tool may not be aware of
the PL structural considerations inherent in the program language
constructs which Ada has. Carefully mediated access to the nodes in
the APSE data base must be maintained so that an "unknowledgable"
user or tool does not destroy the integrity of the PL.

3.3.2 lAPSE Object Reuse ([TCSECI 3.2.1.2)

When created, KAPSE objects mst contain no data for which the
creating subject is not authorized.

3.3.3 lAPSE Labels ([TCSEC] 3.2.1.3) .0

Mandatory sensitivity labels =ust be associated with all APSE
subjects and objects, including:

a. Users of the system;

b. Program library elements in source form;

c. Program library elements in compiled form;

d. Text files, as for documentation;

e. Directory nodes (whose entries might be classified); and

f. any other data associated with a node in the data base
hierarchy.

These labels are to be used as the basis for mandatory access
control decisions, and must accurately represent the security level
of the entity with which they are associated. The labels mist be
exportable outside the realm of the relevant APSE, regardless of the
receiving subject. The labeling requirement applies to electronic
exports from the APSE to other electronic subjects (typically
another computer); it also applies to exports to a human user (i.e.
what the user sees at a terminal), and to hard-copy "instantiations"
(listings or other graphic output) of objects from the APSE. In
particular,

DRAFT 21 1/16/84 ..

3L-27

......

a. machine-readable labels must be placed on tapes, disks, and
computer-to-computer commanications links,

b. the maximum level of a user's session, and hence his/her
terminal, must be shown to the user upon login, and must be
available to the user whenever it is requested;

c. there must be labels at the beginning and end (top and
bottom) of each page indicating the highest level of
classification or sensitivity of the information on the
page, and

d. there mast be labels at the beginning and end (first and
last page) of each listing indicating the highest level of
classification or sensitivity of the information in the
listing.

The SSO must be able to (in an audited fashion -- see "Auditing in

the APSE") change or override the labels which are so associated
with all the informational objects mentioned above. This includes
the hard-copy labels.

3.3.4 lAPSE Mandatory Access Control ([TCSECI 3.2.1.4)

The KAPSE must enforce mandatory access control policy over all

resources that are directly or indirectly accessible by subjects
external to the &APSE. It must support both hierarchical (level)
and non-hierarchical (as in compartments) classifications, and
should in fact be able to support at least two levels of security.

As suggested earlier in this document, it is appropriate to apply
the mandatory access controls in the data base at the same place as
the discretionary access controls. That is to say, an appropriate
place to apply security classification of objects is at the node
level, by use of a new Undato" attribute called securitylevel.

The precise meaning and format of the entries in the securitylevel
list must be universally agreed upon if transportability of portions
of an APSE data base is to be possible in a secure manner. One
workable scheme is to wake the first element of the list the level
(unclassified, confidential, secret or top_.,secret) and make the rest
of the entries the compartments, coded in a standardized fashion.
This informstion

1. should be settable by the creator (and oly if the level
set is within the creator's working range),

DRAFT 22 1/16/84

3L-28

.o..........Oo.o........-.... " C. -........ .*. .*.4AtL t.

2. should default to the level of the parent node (again, 911a 0
if the default is within the working range), and

3. should . be downgradable below its created level except
by a system security officer.

3.3.5 [APSE Identification and Authentication ([TCSECI 3.2.2.1) •

The KAPSE must require users of the APSE to identify themselves
before any actions are performed on their behalf. Some form of
trusted authentication (in a trusted fashion, referencing secure
authentication data) must be provided by the [APSE. The
identification of a user which is so provided must be associable to
the auditable (see below) actions taken by that user. What this
means is that a trusted path to the trusted computing base (within
or underlying the APSE) must be available to the user in a known
fashion. In particular, this path must be available at the time of
establishment of the initial connection, i.e. logins must be handled
by the KAPSE in a trusted fashion. l

3.3.6 [APSE Auditing ([TCSEC] 3.2.2.2)

The [APSE must be able to create, maintain and protect a record of
access to APSE objects. The record must identify "

* the object in question,

* what subject requested (attempted or obtained) access to the

object,

• what type of access was requested, and P

* when the access request occurred.

* The System Administrator must be able to selectively audit
access either subject-wise (actions of one or more subjects
based on identity) or sensitivity-wide (accesses to objects .
of a certain security level).

Also, the [APSE must be able to audit all events that might

contribute to exploitation of covert storage channels. That is to
say, if memory is being (even logically) shared by two processes in .-
such a way as might disclose information in an unauthorized manner U
(e.g. by inter-process communication), then that event must be
audited by the [APSE.

DRAFT 23 1/16/84

3L-29

. . -.

SECTION 4

TRUSTED TOOL AND WORKING RANGE CONSIDERATIONS

This section provides some justification for requiring trusted tools
(operating outside the KAPSE), working levels and ranges, security
levels and ranges, some examination (through some simple generic
examples or scenarios) of the interaction of these concepts, and
rules, founded upon the basic mandatory requirements given in
Section 2, governing the operation of levels and ranges. Generic
examples are provided first.

4.1 Some Examples

Suppose that a project effort has an APSE, possessing several levels
of data. Suppose further that the following conditions hold.

1. The APSE contains information at the unclassified,
confidential and secret levels.

2. The APSE contains planning documentation information, a

large number of separate, project-unique program units in
Ada source code and in (perhaps by virtue of compilation)
intermediate language pseudo-code.

3. Each of the entities above has information at each level,
e.g. there are unclassified, confidential and secret
informational objects (in the abstract sense) in the
planning documentation information,

4. The classification of type information for confidential and
secret Ada routines is typically of strictly lower
classification than that of the code. For instance, if
there is a procedure IVTERROGATE_EMITCHAR that is --

classified secret as a whole, the specification of types of
its arguments may be classified only confidential.

5. The classifications of the paragraphs in the planning
documentation may vary rapidly from unclassified all the
way up to secret.

We now consider two simple development tasks for a user with enough
expertise to perform both tasks, but only a confidential clearance:

DRAFT 24 1/16/84

3-30

1. excerpting unclassified documentation, from planning
information whose highest classification is secret, to aid
in production of more detailed specifications, and

2. running a consistency check (a partial compilation, without
linking, to make sure invocations of other program units
are properly typed) on an unclassified monitor program unit 0
that calls confidential and secret program units whose type
information is never above confidential level.

If one ignores the aggregation issue (as it has been ignored
throughout this paper), it is clear that the first task involves the
user examining that portion of the data which is classified no
higher than confidential (since the user is only cleared to that
level) and producing excerpts which are unclassified. Likewise, the
second task involves referencing confidential or unclassified
information which may be closely associated with, but which does not
disclose, information of a possibly higher classification.

p

In both cases, the user is attempting access only to information for
which s/he is authorized, and so should not be impeded by the system
from task performance for security reasons. However, in both cases,
a simple organization of data that does not separate the various
levels of information classification (albeit in a trusted fashion)
will prohibit the user's accomplishment of the task.

Although these tasks can be accomplished by having them "forwarded" -

to a human agent with higher clearance and subsequently having the
output downgraded back to the user, this process will take too long.
If, however, there is a trusted tool providing the interface to the
multilevel objects, that tool can examine the working ranges and "
working levels of its requestors (via a standardized invocation of
the APSE) and, because it is trusted, make the appropriate accesses
to the multi-level files requested. The exact structure of the
multi-level object is irrelevant (in that the user, or any of the
untrusted tools invoked by the user need not know the structure),
nrov1ded that direct access to multi-level data objects is suitably P
limited to the appropriate trusted tools. This can be accomplished
by using something like the £LS via attribute. General (i.e. by
other than via trusted tools) read access is not really a threat to
security or integrity, since the object would have the - -

securitylevel attribute set at the level of the highest
classification of any information contained in it. However, general
write access would pose an integrity difficulty, since an arbitrary
tool could not be trusted to preserve the multilevel structure.

Structuring of multilevel objects is neither mandated nor specified
here. However, the working level and range of a tool and its

I

DRAFT 25 1/16/ 84

3X-31
.5 1/ 6/.. ...-..-. ..

'2'.c.:- - -..- , -

S. . .:. . . .-

of the highest-classified information object within the data object 0
(i.e. highal is the value of the object's security_le.vel attribute).

4.2.2.3 Directory Security Range. For a directory structure node,
the securityrange attribute will have two entries like the one in
the securitylevel attribute, indicating the lower and upper limits
on the classification of data below that node. "

4.2.2.4 Default Node Security Rante at Creation. The security range
of a directory node defaults t. that of its parent node and m-st
otherwise be a restriction of the security range of the parent node.

4.2.2.5 Chanain, Directory Security Ranaes. Changing the security ,
range of a directory node is a restricted action, as follows:

a. It cannot be restricted to a range more narrow than that of
its existing children.

b. It cannot be changed by any user other than a System
Security Officer or the creator of the node.

c. Expansion of the security range past the security range of
the parent cannot be done by any user other than a System
Security Officer (since this forces parent node ranges to
be expanded).

d. Any such changes must be audited.

4.2.2.6 User Perception of Security Range. For a multilevel data

object, its security range is of "visible" use only

* to trusted tools, and

* for informational purposes to authorized users,

since they are the only entities in the system trusted to deal with
multilevel objects securely. It is intended only for such
multilevel objects as documents or program libraries, and assumes
trusted maintenance of partitions between subobjects (paragraphs,
procedure argument type lists, etc.) of different classifications. .-

4.2.3 Rules for the Workini Rante Attribute

4.2.3.1 Workina Ranaes for Potential Subiects. Users, terminals and
tools have reading and writing working ranges. The readinst working
range is the range of levels of objects from which information may
be acquired by the user, terminal or tool. The writinst working
range is the range of levels of objects to which information may be

DRAFT 27 1/16/84

3L-33

,. .. -

.

- " I

transferred by the user, terminal or tool. Inherent working ranges
are ranges which exist independent of APSE session-related

restrictions or alterations. Ranges which are dependent upon APSE

session-related restrictions or alterations are described as session '"n.

or jctual working ranges, as appropriate.
"3

4.2.3.2 User Readiny Workint Ranze. The inherent reading working
range of a user is [unclassified, usrcl], where usrcl is the
clearance of the user. A user may restrict or expand the session
reading working range during a session, as long as that session
working range is within the user's inherent reading working range.

4.2.3.3 User Writint Workinf Rane. The inherent writing working
range of a user is [unclassified, syshi], where syshi is the maximum
information classification level in the APSE. A user may restrict
or expand the session writing working range during a session, as
long as that is within the user's inherent writing working range.

4.2.3.4 Terminal Reading Workins Ranse. The inherent reading

working range of a terminal is [unclassified, mutvl], where wtvl is
the maximum terminal working level.

4.2.3.5 Terminal Writinif Workinit Rane. The inherent writing
working range of a terminal is [vl, syshi], where vl is the working -

level and ayshi is the maximum information classification level in
the APSE.

4.2.3.6 Trusted Tool Workint Rane. The inherent working range of a

trusted tool (for both reading and writing) is
[unclassified, syshi].

4.2.3.7 Untrusted Tool Working Rane. The inherent reading working
range of an untrusted tool is [unclassified, wl]. The inherent
iveiting working range of an untrusted tool is [vi. syshil. The
inherent working range of an untrusted tool is the (almost) trivial
range [wi, wl].

4.2.3.8 Restrictions of Working Range Between Subject Entities. The
actual working range of a user U during the invocation of a tool T
is dependent upon

a. the user UIs session reading working range I (U) and

session writing working range R(U), r

b. the terminal's inherent working range, and

c. the working range of T and all the tools invoked directly
or indirectly by T.

DRAFT 28 1/16/84

3L-34

......... o .,..=

~~~~~~~~~~~~..-......................'.......-........-.........-......,.......,.........................,..............' <', ,, .... ,.,. . . ,. ..- -_



. o_

What should be made clear here is that a terminal is not the only -

entity that mediates a user's access to information. AUx tool
invoked either directly or indirectly by a -ser also mediates access
to information. The illustration entitled "Subject/Object
Information Flow from Tool to Tool" shows a typical high-level flow
path for this information. It begins with the user and continues
through the user's terminal, to Tool 1, then Tool 2, then Tool 3
(which could be the same as Tool 1) and finally back through the
terminal to the user. No data objects are shown in the diagram, but
access to them is controlled as described below. In this diagram,
rwr stands for reading working range, and vwr stands for writing
working range, for the entity in question.

For information to pass from one tool to the next, the intersection
of the actual reading working range of the subject tool with the
actual writing working range of the object tool (symbolized by the
star in the flow path) is taken. Only information whose level is
within the resulting intersection can pass. Note that for untrusted -

tools, this intersection consists in the working level wl only. The
overall effect is that the actual working range is restricted by the
working ranges of all the entities through which information must
pass, and that if any intersection is ever null (i.e. no levels
exist in the working range), the inherent invocation must fail. The
rules for tool access to data objects are discussed below.

4.2.3.9 Limitation of Working Level. At all times, the working
level must be within the actual working range.

4.2.4 Additional Rules Pertainina to Multilevel Obiects

In documents, the paragraph markings may vary over a wide range. In

program libraries, the existence and types of objects and/or
subobjects may be of a different level than that of the object
itself. For reference and type resolution, information of a lower
classification would be needed than would be needed for full
linking. It is envisioned that any secure APSE implementation might
have multilevel PL containers maintained in some trusted fashion, to
allow for secure, yet efficient, software development.

Nowever, U's actual session working range restricts a trusted tool
T's perceived working range when acting on U's behalf. In
particular, for read access, the actual reading working range for
the trusted tool operating on a multilevel object N will be the -
intersection of N's security range with the U's actual session
reading working range. Similarly, for write access, the actual
writing working range for the trusted tool operating on a multilevel
object N will be the intersection of N's security range with the U's
actual session writing working range. For either reading or

DRAFT 29 1/16/84

3-35

"-''-.-'''."-Z '-- .""-.. . . . . . . ... . . . . . ..-. . . .-." . - J - -: - . . " .



terminal -vrt]- -Iw~ol) - tooll

I [twwr (tool 1)]
[rwr(terminal)1

I [rwr(tool2)].
[wwr(user)]

user tool 2

I [vwr(tool2) I
[rwr(user)I

I [rwr(tool3)I
[wr(teruinal)J

terminal <- [w~)-*-vrto31 - tool3

Figure 1. Subject/Object Information Flow from Tool to Tool

writing, if the resulting intersection is null (i.e. no levels are
0 ~in both Ire working range and U's actual reading or writing working

range), then that type of access to N by T must be denied, even
though the tool in question is tru~sted.

The working range of N is of little significance to an untrusted
tool D. D can only be trusted to perceive and act upon N as a
single-level object at the highest level of classification of any
subobject in it. Thus, the actual reading and writing working range
of N when access to it is attempted by D will just be
[bighal, higbsll.

DRAFT 30 1/16/84

3L-36



SECTION 5

SECURITY AND THE COMMON APSE INTERFACE SET

The Common APSE Interface Set (CAIS) is a set of Ada packages 0
"designed to promote the source-level portability of Ada programs,
particularly Ads software development tools." [CAIS) This section
provides an introduction to the CAIS in sufficient detail to then
consider the security ramifications of the CAIS itself.

5.1 Purpose and Scope of the CAIS

In theory, the CAIS provides all the interfaces to traditional
operating system services that are required. If a tool is written
in Ada, using the interfaces provided in the CAIS, it should be
possible to port that tool from one host system to another and have ..
it be operational without any significant modifications. The CAIS
is undergoing constant development, review and revision. Thus, the
details of how the CAIS accomplishes its purpose are in a state of
flux as of this writing.

5.1.1 The CAIS Node Nodel

As mentioned earlier in this document, the CAIS is, at its heart,
based on a node model. The ChIS specifies all entities defined
by.the CAIS which are not explicitly defined in the Ada language
itself can be viewed in terms of nodes. Packages are defined in the
CAIS to provide all the necessary management of the nodes upon which
the CAIS is founded. The CAIS specifies four kinds of nodes.

5.1.1.1 Structural Nodes. These nodes are without content. They
serve to "glue" the rest of the nodes in the CAIS (and the system
underlying the CAIS) together.

5.1.1.2 File ftdes. These nodes serve to implement files. In them
are both files and information about those files.

5.1.1.3 Deic Nde. These nodes serve to provide basic device
input, output and control which is not file-oriented (e.g.
terminals).

5.1.1.4 Process Nodes. These nodes serve to implement program (and
thus tool) invocation, job control and process families. They are
created as processes are invoked, hold executable instances of Ada
programs (including all their tasks) invoked for the process, and

DRAFT 31 1/16/84

3L-37

"% " ' " " " " " : ... , .c .'..., . .. .. . ... ,',. ,= ,; . , . ,".,' '." ",-'," .'.,..'.., .. '..,...'.,:,,' " . .:.,.,

r . ... .., .. '.' .. -.. .'.".. ". . .. -.. . . .° ., . . , . . . . . . . . . . ... .... .



are destroyed after those processes terminate (for whatever reason).

5.1.2 Relationshins. Relations. Contents and Attributes

Since nodes are, in themselves, quite abstract and disjoint,

additional constructs are needed in order to make nodes usable. The -,

constructs provided in the CAIS are rela.Unshipu, relation,
contents and attribtes.

5.1.2.1 Relations and Relationshins. Reain and £l .l
provide the logical connections between the nodes. A relation is a
particular directed graph on the nodes of the CAIS. It is uniquely
identified by a lin name, which is an Ads identifier. Because
of this, relations and their names are frequently referred to
interchangeably. A directed edge in the graph of the relation is a

Jexiinshi. In that a directed edge can be described by the
ordered pair of nodes which it connects, a relationship can also be
described in terms of those nodes. In this context, the first node
is called the source node and the second is called the &= n2d..

For example, one node being the parent of another constitutes a
relationship between those two nodes. Thus, the node "family tree"
with the source nodes being the children and the target nodes being
the parents is the graph corresponding to the "parent" relation.
This relation is fn.cionaI., i.e. a given source node is connected
by that relationship to only one target node. In this case, a child
has one parent, so that the concept of the parent of a node is
well-defined.

However, a parent may have many children. If one takes the family
tree example above and reverses all the edges, one gets the graph
corresponding to the "child" relation. In this relation, a given
node (parent) may have a relationship with many nodes (children).
In this case, the relationship will not be functional in nature:
"the child" of the given node will not be a well-defined concept.
To distinguish among the many nodes having a relationship with the
given node, another concept is required, namely the rati--nship

* - kyX. The relationship key is an identifier which may be null if the
relationship is functional (as in the example of the parent
relation). Like the relation name, the relationship key is an Ada
identifier.

The parent and child relationships described above are examples of
.iMaU. relationships. A primary relationship is one for which the
graph of the corresponding overall relation is a strict tree. For a-"
primary relation (in which the relationships are all primary), at
most one directed path, representing a series of relationships, will
exist from one node to another. When a node is created, a primary

DRAFT 32 1116/84

X1-38



relationship fro its parent node is also established. The parent.
relationship is thus referred to as "the primary relationship".

All relationships which are not primary are called sn-ary.
Secondary relationships may express connections of an arbitrary

AN sort, such as connecting source code to documentation, alias naming,
or tying of user jobs to user directories. If a node is deleted, O
its primary relationship (with its parent) is broken, and access
attempts via other relationships (secondary or otherwise) will fail.

There are three pre-defined secondary relations which associate to
each process node. They are:

1. CURRETJOB This node points to the top-level job node for
the job which created the process.

2. CURRENTUSER This node points to the current user's top-
Ii level node.

3. CURRENT_MODE This node points to the current node of focus
for the process.

A concatenation of zelation names and/or keys emanating from one
node to another via a relationship path forms a pthname. Pathnames
provide the syntactic navigational means for a process (ultimately
acting on a user's behalf) to make access to nodes. One may use the
CAlS-defined secondary relations to do this or use a relation
defined elsewhere (perhaps in some package separate from those
packages in the CAlS).

5.1.2.2 Content. Content is associated with all but structural O
nodes and is semantically dependent on the kind of node involved.
For file nodes, it is the representation of an Ads external file.
For device nodes, it is the representation of some logical or
physical device. For process nodes, it is the representation of the
execution of a program.

5.1.2.3 Attributes. An attribut is associated with one node or
relationship, in a functional fashion, and expresses some quality of
the node or relationship. The CAlS currently defines only the
accesacontrol and security-level attributes, and only defines these
on nodes (ALS has a somewhat move extensive suite of node
attributes, as described earlier). s

5.1.3 CAIS Process Cgoe-nd. Control and Co-,nication

The CAIS provides means for managing process nodes. A process ay
create other processes, control those processes (suspending,

DRAFY 33 1/16/84

3L-39

i : . . . . .......... . . . . . . . . . .
- ~ ~



: - .-,

resuming, interrupting, aborting or terminating them) and
comunicate with those processes.

5.1.3.1 Process Creation. The CAIS provides means for a process to
invoke another process and wait for it to complete, or to spawn
another process and continue without waiting for it to complete.
Provision is made in either case to pass parameters from the
creating (parent) process to the created (child) process, adjust the
child process's notion of the current node and specify standard
input, output and error files.

If the child process is invoked, the parent process is suspended
until the child process terminates or aborts, and both results and a
completion status may be returned by the child process. If the
child process is spawned, the parent process and the child process
run in parallel, using CAIS process comunication and interruption
packages to interact. An AWAIT-PROCESS capability exists which
allows the parent process to wait (for some time duration) on the
child process as if the parent process had invoked the child process
rather than spawning it.

5.1.3.2 Other Process Control. A CAIS process may suspend, resume,

or abort another process, or terminate itself in the "normal"
manner. If it aborts another process, the aborted process's
descendants are also aborted recursively. In addition, one process .
can interrupt (signal asynchronously in the manner of a pseudo-
interrupt) another process. In this case, the receiving process may
ignore the interrupt, abort execution, awaken a suspended task or
place the interrupt on hold. Provisions exist in the CAIS for
determining the status or results of all such actions as .. -
appropriate. .

5.1.3.3 Process Cosusnication. A CAIS process may comunicate with

another process (or itself) using channels named with an Ada
identifier.

5.2 Security Considerations in the CAIM

Some security ramifications of the CAIS are now considered.

5.2.1 Signaling Between Processes

In the absence of any other conditions of process trust, signaling
between processes, as defined in section 6.5.1 of [CAIS], must be
confined to the same security level. Unanswered "signaling up"
(signals with no response) from a process node at a lower level to a
process node at a higher level in the classification lattice

DRAFT 34 1/16/84

3-40

J. Z

. . . . . . . . . . . .
" ... ..... ... -. ...., . ... . ,. . .. .. . .. - .. .. . . . . .. . -. -. ,. -. .- . .. . .. .. . . . . .- .. -. ... . . -. : -, -. . .. .-- -. . . -. .. :.:.



presents no security problems. However, "signaling down" (to a .
process node not at the saw or higher level, regardless of whether
a response is given), cannot be done by other than a trusted process
node.

Process status may in some circumstances serve as a slow, self-
clocked, covert timing channel. However, randomization of response 0

time to a process status request can be used to slow down the rate
of leakage. In any case, the leakage rate is likely to depend
heavily upon the precise CAIS/APSE application and implementation,
and ties closely with performance.

The question here is whether a distinction should be drawn between . .
the security level (or working range) of a process node and the
level/range of the node's status.

Suppose first that one does draw a distinction between the level of
a process node and the level of its status. Suppose further that
process node A has access to the status of process node B, and that S
process node C, operating at a higher security level than A, has
control of the status of B, using the CAIS..PROCESS.CONTROL package
in CAIS Section 6.2. Then C can use the status of B (say, using
SUSPENDEPROCESS and RESUMEPROCESS as 0- and 1-bits respectively) to
as a covert channel to A. Even if B is "trusted", B cannot affect
this situation. The issue then becomes one of permissible covert
channel leakage rate and means of leakage detection (which should be
possible, although not automatic, in a B2 system).

Nov suppose that one does not draw a distinction between the level
of a node and the level of its status. Then one has presumably
"solved" the problem of process status as a covert channel, but one
may have affected interoperability if (in the context of the above
example) an application requires that A be capable of reliably
determining the status of B.

In the context of the working range, it is conceivable that process
control might be regarded as data from the controlling process node
to the controlled process node (even through the controlled node
might not perceive it as such). In this case, unless A were trusted
(in which case the covert channel problem presumably does not
exist), the status would fail to get through to A. since the status
of B is actually a "datum" from C. Status information would have to
be explicitly recognized BENEATH the CAIS (at the lAPSE level),
however, so that C could not "sneak one by" through B.

The response from a higher level to a signal at a lower level poses
the same tradeoff between covert channel acceptance and
interoperability considerations. One solution might be a

DRAFT 35 1/16/84 -

3L-41



toolsmith's guideline saying that a tool intended to work without
.mition in an Mult-Level Secure system should be ready to

handle a security exception (or some other kind of access exception,
if the raising of a security exception would in itself provide a
covert channel.

5.2.2 Data Sharina

It is possible that a significant amount of data must be shared
between processes. This may happen, for instance, in the passage of
"sanitized" text or package type declarations in the example given
in the previous section. If a reasonable level of performance is
required, a mechanism should exist that allows for efficient passage
of data as above

* from a higher-level trusted process node to a lower-level
(not necessarily trusted) process node, or

• from a lover-level process node to a higher-level process .

node, with neither process necessarily being trusted.

However, in mU secure implementation, such use of information
passing should be considered distinct from brief status signaling
between processes (slightly longer than that described in [CAIS] -- --

-' Section 6.5), although at least the same security restrictions -

probably ought to hold for data sharing transfer. It should be
noted that, as currently proposed, the CAIS.PROCESS_* packages make
no distinction between large and small messages (since even those
notions are highly application-sensitive).

In practice, of course, compromise of wide-bandwidth data is .

significantly more harmful than it is for narrow-bandwidth data. As
with signaling, above, this is a leakage-rate issue which ties
closely to performance considerations.

5.2.3 Process Isolation

In general, process nodes at different security levels Bus be

isolated from one another, irrespective of trustedness, since
untrusted "code", by definition, cannot be trusted not to "walk on"
or otherwise subvert trusted code. The data sharing described
previously constitutes a limited exception to this policy, as does
the status interrogation.

In a typical secure system, though, there is no reason why one

process should know anything about another process which it has no
authorization (as determined by access control) to know. Hence, no
other exceptions to such a policy are sensible.

DRAFT 36 1/16/84

XL-42



5.2.4 Attributes and Relationshiv8 0

In some sufficiently classified DoD programs, existence of certain
components of the program, or of the program as a whole, may be
classified. Furthermore, certain associations between various
aspects of the program may also be highly classified.

The ability to determine the associations described above is quite
useful for cleared users with the necessary need to know, but should
be denied to all others (to the point of restricting path
navigation). Thus, the CAIS should accommodate the ability to apply
the security..level and access_control attributes to relationships,
as well as to structural nodes.

5.2.5 On Reality and Performance "Reauirements.

Process family management, which is a convenient way to build
component tools in a working environment such as UNIX, an APSE or
even (perhaps) an Ada run-time environment, is nonetheless extremely
expensive in the current technology of secure systems.

Much of the overhead in keeping a secure system secure relates to
the need for separation of process contexts in that system. Process
creation is expensive because

(a) Context creation is expensive. The control structures
which must be set up to provide for secure execution of a
process and which define the process context are typically
extensive.

(b) "executable instantiation" of a process is expensive. A .
process must be created in a secure fashion, recognizing
the existing process world and its access restrictions.

For the same reasons that context creation tends to be expensive,
context switching also tends to be expensive. This can be avoided
to an extent if there is the sort of early-in-design optimization .
that, for instance, the Nebula-style Military Computer Family
architecture is intended to provide.

Finally, process management, apart from invoking, spawning,
terminating or aborting, is expensive because

(a) context switching is expensive, and

(b) process swapping (which will be a reality in any memory-
intensive situation where "enough" memory is not cost-
effective) causes substantial overhead in a secure system

DRAFT 37 1/16/84

3L-43

-* .,...y..**.,.



and is therefore expensive.

Thus, it must be realized that the performance issues which underlie
any secure system will have an adverse effect on the implementation
of any model similar to a process node model.

It is not, for the purposes of the CAIS, a reasonable conclusion
that "we should then throw out the process model". A more
constructive approach would be that "considerable attention should
thus be devoted to how to manage processes securely AND
efficiently".

It may be noted that the handling of processes is not an issue
involving requirements and criteria as much as it is a performance
or guideline issue. However, this issue should be addressed
promptly to avoid doomed efforts to produce cost- and performance-
efficient implementations of products in Ada, using a Multi-Level
Secure APSE. .

o.

DRAFT 38 1/16/84

3L-44
-- - . -

• o . .. .
:,-/..-,°_, ,_ : -----.... ...... ,........ . . . . . ... •.q "• . . ...., - . . .o 0 • . .• •. . . .- o -o o . --- - • - , o 

o



0

REFERENCES

ADAINIT Department of Defense, Instruction 5000.31, November 1976.

5200.28 Department of Defense Directive, "Security Requirements for
Automatic Data Processing (ADP) Systems", DODD 5200.28, 0
revision 2, April 1978.

5200.1R Department of Defense Regulation, "Information Security
Program Regulation", DODR 5200.1-R, August 1982.

STONEMAN Department of Defense, "Requirements for Ada Programming .
Support Environments: STONEMAN", February, 1980.

SOWALSN Department of the Navy, "Statement of Work (SOW) for Ads
Language System / Navy", N00024-83-PR-21808, August 1983.

SSPECALSNComputer Architecture Branch, "System Specification for the - S
Ada Language System / Navy", Naval Ocean Systems Center,
San Diego, CA, June 1983.

CAIS KIT/KITIA CAIS Working Group, "Draft Specification of the
Co-o-n APSE Interface Set (CAIS)", Version 1.1, September,
1983. 

TCSEC Department of Defense Computer Security Center, "Department
of Defense Trusted Computer System Evaluation Criteria",
CSC-STD-001-83, Fort George Meade, MD, August 1983.

* BELLAP D. E. Bell and L. J. LaPadula, "Secure Computer Systems", 
ESD-TR-73-278, Volumes 1-Ill, AD A770768, AD A771543, AD
A780528, The MITRE Corporation, Bedford, MA, November 1973
- June 1974.

E012356 Executive Order 12356, "National Security Information",
April 1982.

ALS82 Communications Electronics Command, "System Specification
for the Ada Language System", U. S. Army, August 1982.

LAND C. E. Landvehr, C. L. Heitmeyer, and J. McLean, "A Security
Model for Military Message Systems", in preparation.

DRAFT 39 1/16/84 .

3L-45



REFERENCES

3 (Concluded)

DION8i L. C. Dion, "A Complete Protection Model", IEEE 1981
Symposium on Security and Privacy, Oakland, California,
April, 1981.

DRF 0 /68

X-4



0

DISCRETIONARY SECURITY MECHANISM

FOR THE CAIS -0"

KIT/KITIA CAIS WORKING GROUP

Abstract

Discretionary security protection and a mechanism for dis-
*, cretionary access controls for the Common APSE Interface Set

[CAIS] is described. .0

Section 1
Introduction .0

In a trusted computer system, access control mechanisms pro-
vide control over access by an individual, or a process acting on
the behalf of an individual, known as the subject of the access,

j to a unit of information, known as the object of the access. Dis-
cretionary security protection provides protection from unauthor- . - '
ized access of objects by named individuals or groups of indivi- .
duals. The establishment of access rights to an object is per- -.
formed by an authorized individual, typically the creator or
owner of the object.

1 Discretionary control differs from mandatory control because
it "implements an access control policy on the basis of an
individual's need-to-know as opposed to mandatory controls which
are driven by the classification ... of the information." [DOD] "
Discretionary access controls are complimentary to, rather than a
replacement for, mandatory controls. While discretionary controls

r allow an individual to determine what user, or users, have access -

privilege to an object, it does not require that those users are
trustworthy of that privilege. Likewise, while mandatory controls
may grant access to an object to a trustworthy individual, it
does not require that the individual has a need to know the -

* object contents.

An example of a discretionary access control mechanism is
the Access List [CS]. An Access List assigns to each object a " -

list of access entries, each entry consisting of a user or group -.--
*. specification and a set of access privileges granted or denied to -..

the specified user or group.

3M-1



Section 2

The CAIS Discretionary Access Control Model

In a security controlled CAIS, an "object" is any CAIS node
and a wsubjectw is any CAIS process node acting on the behalf of
a given user.

2.1 Group Nodes

A CAIS user top-level node represents the individual user
for discretionary access control. A named group is represented by
a group node. A group node is simply a structural node with rela-
tionships defining each of the group's members. A group member
may be either an individual user, a program, or another group.

A program is represented by the file node for the executable
image of the program. A program is normally placed in groups
only with other programs. For example, a program group may have
as its members all compatible versions of the compiler, or a col-
lection of tools designed to operate on a given type of data.
Groups containing users may be called user groups, while groups
containing programs are termed program groups.

Each group member is defined with either a primary relation-
ship DOT or a secondary relationship POTENTIAL_MEMBER. The pri-
mary relationship DOT is used to define those members that are
considered permanent members of a given group. It is used to
create a hierarchy of groups and sub-groups by defining members
of a group that are themselves groups. An individual user or pro-
gram may not be the target of a primary DOT relationship emanat---
ing from a group node.

The secondary relationship POTENTIAL_MEMBER is used define
those members that may dynamically acquire membership in the
group. This act of acquiring membership is termed "adoption of
group privileges" or simply "adoption". The phrase "potential
member of a group" refers to any process, group, or program node
that is the target of a POTENTIAL_MEMBER relationship from that
group, or from any of that groups descendants. Figure 1 shows an
example of a group structure defined with DOT and
POTENTIAL-MEMBER relationships.

Certain group nodes can be accessed from a process node with
the relation GROUP and a relationship key interpreted to be the
group name or function. Two predefined user groups, ALL, which
has all other groups (other than the group NONE) as its members,
and NONE, which has no members, are provided. Thus the group con-
taining the 'world' is accessed via the path 'GROUP(ALL) (fig.
2).

3M-2



2.1.1 The Adopt Operation -- The adopt operation is used to
acquire the privileges of a particular group. When a process
adopts a particular group, a CAIS-controlled relationship, called
ACTINGGROUP, is created from the process node to the group node. .
The phrase "acting member of a group" refers to any process node
that has ACTINGGROUP relationship to that group or to one of the
group's descendants. The phrase "acting group of a process"
refers to any group node, or ancestor of any group node, that is
the target of an ACTING_GROUP relationship from the process (fig . ..
2). For a process to adopt a given group, an acting group of the
process must be potential member of the given group. When any
process node is created, it implicitly inherits the ACTINGGROUP
relationships of its parent and adopts the file node for the pro-
gram it is currently executing. When a root process is created,
it implicitly adopts its current user node, as well as the file
node for the program it is currently executing. 0

(A CAIS implementation may use group nodes to identify user
groups for other purposes, such as job accounting, project or
function identification. For example, a CAIS-controlled rela-
tionship attribute called PRIMARYGROUP that is assigned to one - .
of a process' ACTING-GROUP relationships and relates the process .
to its 'primary working group'. In general, group nodes are suit-
able for any user-defined relationship or attribute that would be
meaningful to the group).

2.2 The Access Relation 0

An Access Relationship from an object to a group, user, or
program node defines access privileges to the object that are
either allowed or disallowed to the group, user, or program. Any
object may have zero or more Access Relationships. •

The Access Relation is called ACCESS and detines access
privileges for a group, user, or program, and its relationship
key distinguishes the group, user, or program name of the node
that is the target of the relationship. Each Access Relationship
may have Privilege Attributes which specify what access
privileges are granted the group, user, or program.

Access Relationships may be established when an object is
created, or at a later time. Implementations may provide a
default set of Access Relationship that is established when an
object is created. This set may include an Access Relationship
which grants all access to the object's creator.

2.2.1 Privilege Attributes -- One Privilege Attribute is
defined, called GRANT, which specifies what privileges are
granted to the target group of the Access Relationship.

3M-3

.. ... , , .. ..... , . . . . ... .. . . . . - . .- : . : : . . ,.. . ... . : , , .,, . . .. . .. -:



The Privilege Attribute value consists of a list of
Privilege Specifications. Each Specification consists of a neces-
sary privileges list, followed by a right-arrow, followed by a
resi,:..ing privilege list. A list with one element may be replaced
by the element alone. If the necessary privilege list is empty,
the Privilege Specification may be replaced by the resulting
privilege list alone.

The required and resulting privilege lists are lists of -

privilege names. A privilege name has the syntax of an Ada iden-
tifier. Privilege names may be user-defined, but certain
privilege names have special significance to CAIS operations such
as READ, WRITE, and CONTROL. The privilege name READ specifies
the ability to perform read operations on the object, while the
privilege name WRITE specifies the ability to perform write
operations on the object. The privilege name CONTROL specifies
the ability to perform access control functions on the object,
such as modify the access control attributes. Other CAIS specific
operations will be defined and may include CREATE, DELETE,
APPEND, and UPDATE. (The intent here is not to define specific
access privileges or procedure semantics, but rather to outline a 9
general model for access control). The following are examples of
privilege specifications:

(READ, WRITE, APPEND)

(COMPILE, CONTROL) -

((EDIT, COMPILE)=>(READ, WRITE))

(READMAIL-> (READ, WRITE), SENDMAIL=>APPEND)

2.3 Access Control

Access control is performed for each operation requested on
a given node. Each CAIS operation may require zero or more
access privileges for each object that is accessed in the opera- -

tion. For example, COPYNODE requires READ privilege to the
source node and WRITE privilege to the target node's parent.

Each required privilege for the object is compared to the
process' privileges as defined by the object's Access Relation-
ships. If the object has an Access Relationship to a group node S
that is an acting group of the subject and the relationship
allows the privilege being checked, then the operation is
allowed. Otherwise the operation is not allowed, and the'opera-
tion is terminated by raising the exception ACCESSVIOLATION.

For an Access Relationship to allow a privilege, the -
privilege must appear in a resulting privilege list in a GRANT

3M-4



attribute of the relationship and the privileges in the associ-
ated required privilege list must have been allowed.

(Likewise, a privilege attribute called DENY could be 0
defined. in order to provided the ability to explicitly deny a
right to a group or individual).

An Example

Consider, as an example, a CAIS implementation that supports
two users, Smith and Jones.

1. Jones creates a file in his top-level node with protection
specified by an ACCESS relationship to the group ALL with a
GRANT attribute whose value is "READ". Because Smith has
adopted the group TOOL-DEVELOPERS, which is a child of the
group ALL, he is granted read access, but no other access,
to the file (fig. 3).

2. Smith has, in his top-level node, a mail message file which
is protected to allow read and write access only to Smith
while he is executing a mail program, or to allow append
access anyone while executing a mail program. This is done
by creating an ACCESS relationship to Smith's top-level node
granting the READMAIL privilege and an ACCESS relationship
to the group ALL granting the SENDMAIL privilege. These
privileges do not have special meaning to CAIS basic opera-
tions, and so do not grant- any access to the object. How- - --

ever, an ACCESS relation is also created to the program
group node MAILTOOLS that grants READ and WRITE privilege
if READMAIL has been granted, and APPEND privilege when
SENDMAIL has been granted. Smith creates a process, running
the MAIL program, which causes that process to adopt the
privileges of the MAIL program node, which has the affect of
allowing the process READ and WRITE access to the mail file
in Smith's top-level directory (fig. 4).

r S

Conclusions

A discretionary access control mechanism for the Common APSE
Interface Set has been described. The mechanism uses, as basic
building blocks, the structures already provided by the CAIS and
thus does not add significant complexity to the overall design of
the CAIS. Only the basic structure of the mechanism has been
defined and integrating the mechanism into the definition of the
CAIS will involve further work in defining the specific access
privileges required for CAIS basic operations, as well as defin-
ing any additional interfaces needed to support the mechanism.

3M-5



References

(CAIS] KIT/KITIA CAIS Working Group, Draft Specification of the
Common APSE Interface Set (CAIS), AJPO, U.S. Department
of Defense, 1983

( [CS] Hsiao, David K., Kerr, Douglas S., and Madnick, Stuart
*: E., Computer Security, Academic Press, Inc., New York,

New York, 1979

[DOD] Computer Security Center, Trusted Computer System Evalua-
tion Criteria, Department of Defense Computer Security
Center, Meade, Maryland, 1983

3M4-6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .



ALL.

DO0

DO O

"SUPRVISR" DEVEOPES* "TA~P' 'D*6

POETA
MEMBER- OUT

.39 GROUP relationships provided for

a ccess to group nodes, like "USER"
_________relationships.

*~SMIH*S ROCCSS;1 ACTING GROUP relationships are established
.1 AV Tby Adopt operation, which adopt& the

privileges of a group.

A(A IN) CURRENT-USER is implicitly adopted.

ACTING-GROUP (SMITH)

3?4- 7 ..



GRANT-"'READ"

(ALL) GROUP

JONESSMT

ALL

OBJECT * ~mmmSUBJECT ACTING GROUPTOD

Smith Is Granted Access: Explicitly granted to group ALL which

Includes one of Smith's acting groups.

SM:TH

ACCSS:

A~tINGGROUP(NAITOOLSS

0 3M-8
ACCES GRNT READAIL--WA. RT-)

.............. SEK0 IL -APPEND.. .. .. . ..

. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .

-~ ~ ~ ~ ~ ~ ~~~ATN-RU (PROGRAM)-~ .... .. 2 C- C- C . *C.,.-V x n'~



MANDATORY SECURITY MECHANISM

FOR THE CAIS

KIT/KITIA CAIS WORKING GROUP

Abstract

Mandatory security protection and a mechanism for mandatory
access controls for the Common APSE Interface Set [CAIS] is
described.

Section 1
Introductloh

1. In a trusted computer system, Security protection mechanisms
provide controls over access by an individual, or a process act-
ing on the behalf of an individual, known as the subject of the
access, to a unit of information, known as the object of the
access. Mandatory security protection provides access controls
"based directly on a comparison of the individual's clearance or

6 authorization for the information and the classification or sen-
sitivity designation of the information being sought." [DOD]

A security classification may be either a hierarchical clas-
sification level or a non-hierarchical category. A hierarchical
classification level is chosen from an ordered set of classifica-
tions levels and represents either the sensitivity of the object
or the trustworthiness of the subject. In hierarchical classifi-
cation, the reading of information flows downward towards less
sensitive areas, while the creating of information flows upward
towards more trustworthy individuals. A subject may obtain read-
access to an object if the hierarchical classification of the
subject is greater than or equal to that of the object. In turn,
to obtain write-access to the object, a subject's hierarchical
classification must be less than or equal to the hierarchical
classification of the object.

A participant in the trusted computer system is assigned
zero or more non-hierarchical categories which represent coexist-
ing classifications applied to the subject or object. A subject
may obtain read-access to an object if the set of non-
hierarchical categories assigned to the subject contains each
category assigned to the object. Likewise, a subject may obtain
write-access to an object if each of the non-hierarchical
categories assigned to the subject are included in the set of
categories assigned to the object.

3N- 1



V -7. m

A subject must satisfy both hierarchical and non-
hierarchical access controls to obtain access to an object.

Section 2

The CAIS Mandatory Access Control Model

In a trusted computer system, mandatory access controls are
provided by assigning a label to each subject, typically a user
or process, and object, usually a file or other unit of informa-
tion. The label establishes the hierarchical classification and
non-hierarchical- categories for each object or subject. Access to
an object is controlled at each operation request by a subject.
If the subject, object, and type of operation meet mandatory
access control requirements, the operation is allowed, otherwise
the operation is denied.

Participants in the trusted computer base are CAIS nodes.
Subjects requesting access are CIAS process nodes, while an
object may be any CAIS node. Operations are CAIS operations and
are classified as read, write, or read/write operations. Access
is determined at the time the operation is requested, by compar-
ing the classification of the subject with that of the object - - -
with respect to the type of operation.

2.1 Labeling

The labeling of participants is provided by CAIS-controlled
node and relationship attributes. An attribute, called
SUBJECTCLASSIFICATION, is assigned to each process node and
represents the node's classification as a subject. An attribute,
called OBJECT_CLASSIFICATION, is assigned to each node and
represents the node's classification as an object. The classifi-
cation attribute is also duplicated as a relationship attribute
for each relationship to the node. The value of the attribute is
a parenthesized list containing two items, the hierarchical clas-
sification level and the non-hierarchical categories. The
hierarchical classification is a keyword member of the ordered
set of hierarchical classification keywords. The non-hierarchical
categories is a list of zero or more keyword members of the set
of non-hierarchical categories. For example, the following are
possible participant classifications:

(TOPSECRET, (MAIL-USER, OPERATOR, STAFF))

(UNCLASSIFIED, ()

(SECRET, (STAFF))

3N-2

• ' ' °



The following is a BNF for the value of a participant classification
attribute:

OBJECT-CLASSIFICATION :: CLASSIFICATION S
SUBJECT-CLASSIFICATION ::- CLASSIFICATION
CLASSIFICATION :: '(' HIERARCHICAL-CLASSIFICATION

NONHIERARCHICALCATEGORIES
HIERARCHICAL-CLASSIFICATION : : - KEYWORD
NONHIERARCHICALCATEGORIES ::i- 'C' { KEYWORD [ , KEYWORD } } ')'
KEYWORD : :- IDENTIFIER 0

The hierarchical classification level set and the non-
hierarchical category set are implementation-defined.

2.1.1 Labeling of Subjects -- When an individual gains entry 0
to the APSE, a root process node is created at the top-level node
of the user (see [CAIS]). When this process is created, it is
assigned subject and object classification labels, based on the
user's identification. The method by which these initial labels
are assigned is not specified, however the labels "shall accu-
rately represent security levels of the specific [users] with _9
which they are associated." [DOD] When any process node is
created, the creator may specify the classification attributes . . ,
associated with the node. If no classification is specified, the
classification is inherited from the creator. The assigned clas-
sification must adhere to the requirements for mandatory control
over write operations.

2.1.2 Labeling of Objects -- When a non-process object is
created, it is assigned an object classification label. The
classification label may be specified in the create operation, or
it may be inherited from the creator. The assigned classification
must adhere to the requirements for mandatory control over write
operations. When a file node is created, the classification

* label is assigned to it when the file is closed.

2.1.3 Labeling of Device Nodes -- Device nodes are not labeled S
on creation since devices are not dynamically created, like pro-
cess and file nodes, and are generaly shared by users of dif-
ferent classification levels. Instead, the classification label
cf a process opening a device node is assigned to the device

* node while it is open. This is similar to the concept of labeling
the temporary file which is created, in some operating systems, .
on a terminal or printer when the device is opened.

There is a provision, however, for security of devices
located in semi-secure areas. This is accomplished by assigning .-.
to the device node a range of allowable security classifications
when the device is configured. Each device node has, in addition
to the dynamically assigned classification labels, two additional

3N-3



CAIS-controlled attributes. The attribute HIGHESTCLASSIFICATION
defines the highest allowable object classification label that
may be assigned to the device node -- were a process opening the
node labeled at a higher security level than that specified by
HIGHESTCLASSIFICATION, it would be possible to 'write down'
since individuals of a lower classification may receive the
information written.

The attribute LOWEST-CLASSIFICATION defines the lowest
allowable object classification label that may be assigned to the
device node -- were a process opening the node labeled at a lower
security level than that specified by LOWEST_CLASSIFICATION, it
would be possible to read information that is labeled with a
higher classification, since individuals of a higher classifica-
tion may send information to the device being read.

When a device node is opened the device inherits is security
classification label from the process performing the open opera-
tion. If it is not possible to label the device node within the
bounds of the attributes HIGHESTCLASSIFICATION and
LOWESTCLASSIFICATION, the operation fails by raising the excep-
tion SECURITYVIOLATION.

In addition, a CAIS implementation providing mandatory secu-
rity provisions must provide appropriate labeling at the top and
bottom of each page of human-readable output sent to devices such
as terminals and printers.

2.2 Operation Types

Mandatory access controls require that operations be
strictly typed as either read, write, or read/write. An operation
is considered a read operation if any information flows from the
object to the subject. An operation is considered a write opera-
tion if any information flows from the subject to the object.
(This does not allow for indication of the success of a write
operation). An operation is considered a read/write operation if
information flows both ways. The subject must satisfy access con- -
trols for both read-access and write-access to obtain
read/write-access to an object, i.e., the object and subject must
have the same classification label. If access controls are not
satisfied, the operation terminates by raising the exception
SECURITY-VIOLATION. For example,

1. A file create operation is strictly a write operation to the
destination file. However a process creating a file with a
security classification that is higher than its own may not
determine if the create successfully completed, or in any
way access the file after it has been closed. After the file
is closed, the process will have a relationship to the file
node, but the EXIST function will raise SECURITY_VIOLATION

3N-4

. -. .. .. . .. . .. .. '. . . . . . . . . . . . .. .. . . . .. . . . . . . . ".



- - -. . . - .. .. .. . . . .---- 7 - ~ . -

if called to determine if the node exists. Before the file
is closed, it is locked for reading and writing and con-
sidered to be in the process's working memory. When the file
is closed, it is released to the data base and given its -
classification.

" 2. A file open is at least a read operation. It is not possible
for a process to write an existing file of a higher security
classification, since opening the file (determining its
existence) causes information to flow to the subject.

3. A process may create a process at a higher security classif-
ication, but may not determine when the created process ter-
minates. The process may, however, delete the created pro-
cess (remove its primary link to it).

.e
4. A process may read a file that has a lower security classif-

ication, but may not lock the file in any way.

Section 3
An Example

Consider, as an example, a CAIS implementation in which has
been defined the following classification sets-

Hierarchical: (UNCLASSIFIED, SECRET, TOP_SECRET)
Non-hierarchical: (A, B, C, D) .".

Also consider two typical users, Jones, who upon entry into the
CAIS is assigned the classification (UNCLASSIFIED, ()), and
Smith, who is assigned the classification (TOP-SECRET, (A, B).

1. Jones logs on to the CAIS and is created a root process
which is assigned the classification *(UNCLASSIFIED, ().
Jones' terminal is assigned the same classification and
displays on the screen "UNCLASSIFIED"

*2. Smith sits down next to Jones and attempts to log on to the
CAIS at a TOPSECRET security level, but is prevented, since
the Smith and Jones are sitting in an open terminal area and
the device's HIGHEST_CLASSIFICATION attribute has the value
" (UNCLASSIFIED, ())*. Smith goes to his office, logs on to
the CAIS and is created a root process, called SMITEl,
which is assigned the classification (TOPSECRET, (A, B)).
Smith's terminal is assigned the same classification and
displays on the screen *TOP-SECRET, (A, B)".

3. Smith sets his current node to Jones's top-level directory
and attempts to read some files. Smith reads a file

. .. .. . . . .

-. :2.:



"TODOLIST" labeled " (UNCLASSIFIED, (). Smith attempts to
read "COMMANDER-MEMO" labeled " (TOPSECRET, (A, B, C, D))W,
but is denied, since SMITH._ls non-hierarchical categories
do not include "C" or "D1.

4. Jones creates a file labeled "(TOPSECRET, (A, B))" called
"FORSMITH" in his top-level directory. When it is closed
the file becomes inaccessible to Jones, but readable by
Smith.

5. Smith notices the file in Jones' top-level node and reads
it. When done, Smith attempt to delete the file but is
denied access, since this is a write operation to Jones'
directory.

6. Smith attempts to print the file out on
"'USER(PRINTERS).LP1 but is denied access since the device
could not adopt the classification level of the file being
printed. Its HIGHEST_CLASSIFICATION attribute has the value
"(UNCLASSIFIED, M).

7. Smith and Jones both log off the CAIS.

Conclusions

0 mandatory access control mechanism for the Common APSE J-

Interface Set has been described. Further work is required to
define each basic CAIS operation type and to integrate the model
into the CAIS specification.

ii
References

[CAIS] KIT/KITIA CAIS Working Group, Draft Specification of the
Common APSE Interface Set (CAIS), AJPO, U.S. Department
of Defense, 1983

[DOD] Computer Security Center, Trusted Computer System Evalua-
tion Criteria, Department of Defense Computer Security
Center, Meade, Maryland, 1983

p3N-
p..-.

" " 3N-6"""



Subject Ojc

Peal world Individual with TOP- T =RClassified SECRET **SECRET Clearance Information

Trusted CAIS Process Acting on Data Object (file) with
Implementation Behalf of Individ- SECRET Classification

SUBJECT CLASSIFICATIONa(TOP _SECRET. )

OBJECT CLASSIFICATION-(SECRET, )

Pool of Non-hierarchical Classifications

Ordered List of
Hierarchical ClassificationsDELOR

1. TOPSECRET

2. SECRET Al
3. CLASSIFIED

4. UNCLASSIFED

C Examples Of Classification Labels

(TOP SECRET, (Al, OPERATOR, STAFF))

(04CLASSIFICO, M) 3N1-7
(SECRET, (STAFF))



7. " .

CAIS PROGRAM TRANSPORTABILITY INTERFACE -
Racwg

1. Introduction

The Purpose of this Paper is to examine the rationale for the
Program TransPortabilitw Interface (PTI) of the Common APSE
Interface Set (CAIS) C13. The PTI has been Proposed as one of
three interface categories for sPecifwing Interoperabilitw and
Transportability (I I T) renuirements and criteria C23 that must
be satisfied bw the CAIS to facilitate the source level
Portabilitw of Ada software development tools* The other two 0
Proposed interface categories are designated the Tool
Transportabilitw Interface and the Interoperabilitw Interface.

The PTI encapsulates the fundamental Portabilitw reauirements
for a single Ada main Program to execute cunsistentlw in different
environments providing that the Program onlw relies on those
features that are described in the Standard Ada Language Reference
Manual (ALRM) E33. Achieving this level of Portabilitw is
hindered bw the implementor-defined options Permitted in the ALRM,-
This Permissivitw car effect the execution behaviour of an Ada
Progran, when transported among dissimilar operating environments.
TwPicallw, this is most severe when the software and hardware
Processing capacities of the environments are substantial1v
different, The specification of the reauirements on the semantics
of those options that are implementor-defined are necesserw in
order for the CAIS to include a comprehensive PTI. The
Prelimiriarw CAIS was formulated without these reouiroments,
however it clearlw delineates the need to eliminate the
implementation dependencies of the ALRM; ed., 'While the
semantics of the Packages as specified are fullw adhered to, the
CAIS imposes additional reouirements on those semantics that the
LRM designates as being implementation-defined' (CAIS-4, 4,0 Para.
1). ."

Because an Ada main Program mew be expected to execute in
both the software development and target execution environments, - .__
the implementation of the PTI represents the functionalitw that
must exist in both the host and target environments, Normallw
this functionalitw is viewed as included in the Run-Time Swstem - -

(RTS) and Ada Packages that are available from the Run-Time
Support Librarw (RSL). Both the RTS and RSL use the underivins
hardware or software.

An Ada Program has an explicit interface to the RSL, e.g.,
Standard I/O, and an implicit interface to the RTS, eg., tasking.
Conseouentl, to achieve source level Portabilitw, a RTS and RSL *"-"'

must be available, in addition to a code generator, for the
environments under which the Program is to execute. A common
assumption is that the RTS is total1w dependent upon the -
environment and that the RSL is at least Partiallw dependent upon
the environment. The objective of the PTI is to minimize these
dependencies bw specifwing appropriate reauirements and criteria
to be satisfied bw the CAIS.

In order to assess the extent to which the PTI recuirements
and criteria maw impact the I I T of future CAI~s, the host and .
target Run-Time Environments (RTE) should be normalized. Thp
remainder of this Paper outlines a normalization strategw for the
RTE that complements the rationale for the PTI.

30-1



2. Target RTE

The conventional Perception of the target Ada RTE interfaces
maw be modeled through the following Ads swntax (NB- Ada swnta;x is
used in lieu of interface graphics not suitable for word
Processing, and the swntax is not intended to convew an
implementation technicue)

package ISA is ... end;

with ISA
Package RTS is . end;

with ISA, RTS;
Package RSL is ... end;

with RTS, RSL;
Procedure Target-Program is ... end;

In this Perception the RTE comprises the RTS and the RSL.
The Ada main Program depends upon interfaces Provided bw the RTS
and RSL. The interface to the RTS supports the implementation of
Ada semantics that are freauentlw included in an operating swstem.
This interface is available to the code generator of the Ada - -
compiler and is dependent upon the Instruction Set Architecture -

(ISA) of the target machine. The interface to the RSL conforms to
the standard Package specifications defined in the ALRM. Since it
is a Prevalent assumption that there is no target resident

*software outside of the RTE, the RSL interfaces to the ISA. In
addition, because the RSL maw be implemented using Ada, the RSL -
maw also interface to the RTS.

As a result, in this model, the PTI reauirements are
* restricted to those that are derived from the Ada standard Package
* specifications, viz., StandardIO. It is recognized that in manw.
* tactical embedded computer systems the functionalitw Provided

through the RSL is minimal therebw reducing PTI reauirements.

3. Host RTE

The Perception of the target RTE maw be extended to model the
RTE for a host. The RTE for a host, in this context, is assumed
to enable multiple Ada main Programs to share the underlwing
software and hardware Processing resources, and in addition
Provides facilities renuired bw an Ada software development

-" environment. Although there is no accepted model for the host Ada
* RTE interfaces, the following Ada swntax Presents a Perception
• that is consistent with contemporarw Ada Programming Support

Environment (APSE) technology:

Package HOST is ... end$

with HOST;
Package RTS is . end;

30-2

.". . . . . . . . . . . . .
,': . . . .. . . . . . ... ..-... :- .. .'. ,C .- ..-..... .. . . . .--.-- , . ,-.-



with HOSTP RTS;U Package KAPSE is ... end;

with RTS, KAPSE;
Package RSL is ,,, end-

with RTSP RSL$
*m Procedure Host-Program is too end;

with RTS, RSL, KAPSE;
Procedure APSE-Tool is ... end;

In this Perception the RTE comprises the RTS, RSL, and Kernel
APSE (KAPSE). The significant extension to the model for the V
target Ada RTE is the inclusion of the KAPSE. The interface to
the KAPSE supplies operating swstem twPe services resuired for
Portable APSE tools, that are outside of those Provided bw Ada
semantics, through its implementation-dependent interface to the
underlwing software, firmware, or hardware* Because the host
environment is a target environment for Ada Programs, it Provides
the same interfaces to the RTS and RSL as the target model.
However, the functionalitv of the RSL is extended to suPPlw
additional tool services. The RSL comprises Ada Packages that are
Portable to the same extent as an APSE tool. This is achieved bw
relocating RSL host dependent services to the KAPSE. These
services are specified in the KAPSE interface and are not .
Precluded from being implemented in Ada. As a conseauence, the
KAPSE maw use the RTS interface.

The PTI reouirements for the host RTE are changed bw the
extensions to the target RTE model because* of the Portabilitw
envisaged for the RSL. For example, the PTI maw now include more

U Primitive I/0 services, in addition to those encapsulated bw.
StandardIO.

4. Normalized RTE

The Potential increase in Portability of the RSL in the host
RTE derived through the functionalitw of the KAPSE offers the
oPPortunitw to explore a normalized RTE applicable to both host
and target RTEs. The kew to the Proposed normalization strate.

.. are the resuirements Placed upon the PTI,
The degree of Portabilitw achieved for the RSL is dependent

upon identifwing canonical operating swstem twpe services that can
be encapsulated bw the KAPSE for reconciliation with the

. Processing characteristics of the host and target. These services
• are included as recuirements for the PTI. Similar reouirements

maw now be developed for the RTS. These recuir'ents are
-. Predicated on the feasibilitw of an Ada support , This

support kernel would allow Part of the RTS and the KAPSE to be
implemented in Ada. A Possible candidate that aPpears suited to
this separation Policw are the run-time task management

* functions 143. For example, the rendezvous semantics maw be
implemented using senuential Ada relwing on the support kernel to .-- '

share the Processing resources for execution, Ada Programs that

30-3

...........**.* ..... . .

. • -- -- -- -- -. .. .. ?............ _.j" . .. ._ .. '....... .. . . .



enclose tasks maw now interface to standardized task management
functions of the RTS. This interface would be amenable to an Ada
-subprogram specification, but would be materialized into an
executable form bw the code generator and is therefore not
included in the PTI. An expected advantage of this decomposition
is that a consistent model for code execution is available to the
Tool Transportabilitw Interface through the KAPSE for the
execution of multiple main Programs. The KAPSE is provided the
same execution services for Process managemeent as the RTS is
Provided for implemeenting task management. Conseauentlw, the PTI
renuirenents are dependent upon the support kernel interface,

4.1 Normalized Target RTE

The adaptation of the target Ada RTE interfaces into the
rornalized form using the notion of a Target Ada Support Kernel
(TASK) [5] maw be modeled through the following Ada syntax:

Package ISA is ... end;

with ISA
Package TASK is ... end;

with TASK;
Package RTS is t.o end;

with TASK, RTS;
Package RSL is ... end;

with TASK, RTS, RSL;
Procedure Tars.etProgram is t.o end;

The RTE comprises the TASK, RTS, and RSL. The TASK is
aralogous to an executive svstem for the target that services the
PTI and the run-time support for Ada Programs that is not included
in the PT!. The TASK is the only component that interfaces to the
ISA. In addition, the TASK maw include the functionalitw to
su -ort the distributed execution of Ada tasks, where distributed B
connotes both shared and separated Processing resources. While
more general distributed execution of Ada Programs is the topic of
current research [63, an important renuirement of the PTI is for
an Ada Program enclosing tasks to execute consistently in either a
distributed or non-distributed environment.

4.2 Normalized Host RTE

The adaptation of the host Ada RTE interfaces into the
normalized form uses an identical notion of a Target Ada SuPport
Kernel (TASK) and maw be mode]ed through the following Ada swntax:

Package HOST is ... end;

with HOST;
Package TASK is .. end;

30-4
.



with HOST, TASK;
-- Package KAPSE is *.. end;

with TASK;
Package RTS is ,,, end;

with TASK, KAPSE, RTS"
Package RSL is *., end; -'--

with TASK, KAPSE, RTS, RSL;
Procedure APSE-Tool is ... end,

The RTE comprises the TASK, KAPSEP RTS, and RSL, The
functionalitw of the TASK is consistent with the host/target
isomorphism of the PTI. As a result, the PTI reauirements for the -
host RTE are identical to those of the target RTE. Therefore, anw
distributed behaviour of a target Program should be suPPorted on
the host either logicallw or Phvsicallw to enhance Program testing
in the APSE.

5. Conclusions .0

The Proposed normalization of the RTE for hosts and targets
Presents an argument for a set of PTI reauirements that can
enhance the transportabilitw of a single Program, not onlw among

U APSEs but also between an APSE and a target. The PTI addresses
several reauirements that have been categorized a% deferred topics 9 .
bw the Preliminarw CAIS; e.g#, the support of non-software
development (target) environments and distributed execution
environments. A coherent aPProach to the specification of PTI
reouirements for these topics is facilitated bw the normalized
RTE. This normalization introduces the functionalitw of both a
KAPSE and a TASK for the host RTE. The PTI comprises services
that are Performed through the TASK, KAPSE, RTS, and RSL.
However, not all these services can be implemented as Ada
subprograms and maw therefore be outside the the scope of a
near-term CAIS, The recuirements for these services raise the
following issues that have a Potential impact on the
transportabilitw of a Program*

a) simplification of retargeting Ada compilers
b) utilization of available Processing capacit.
c) isolation of an Ada Virtual Machine
d) adaptation of a Program for distributed execution
e) adaptation of a Program for multilevel secure execution

The retargeting of the Ada Compiler is essential if an
existing Ada Program is to execute in a new environment.
Retargeting can at a minimum involve implementing a new code
generator and a RTS, Anw reduction in the magnitude of this
effort will expedite transportation of a Programp, whereas a costlw
effort maw Preclude retargeting the Compiler and therebw Prevent
the execution of the Program in the new environment. The

" normalized RTE attempts to simplifw retargeting bw reauiring that

30-5
'-" 0



.4

the conventional RTS and RSL be Partiallv transportable through
the use of the PTI serviced bw the TASK.

The efficacw of transporting a Program maw depend upon -.
whether the Program exhibits reasonable Performance
characteristics in different execution environments. The
normalized RTE Presents interface reauirements that separate Ada
semantic interfaces from those interfaces that are necessarw to
ensure efficient use of the available Processing capacitw. The
abilitw to effectivelw test a Program in the host depends on the
degree of capacitw transparencw achieved bw the PTI.

The separation of interfaces and the accompanwing functional
decomposition Provide abstraction levels for an Ada Virtual
Machine. These levels may be used to define reouirements for
future firmware and hardware.

The adaptation of a Program to logicallw or Phwsicallw
distributed environments is dependent upon the PTI. The need to
execute a Program in looselw-coupled target environments has been
identified £7), where testing facilities are reauired on both the - -
host and tarset.

The formulation of transportabilitw renuirements for
multilevel secure execution maw become a dominint issue in
developing future CAISs. While multilevel securitw execution is *
not currently mandated for APSEs it is a reauirement of target
software £7). Therefore, achieving multilevel secure execution in -
a target RTE should lead to the same capability in the host RTE . ~-
through the the expected Properties of normalization. The I I T
reouirements for distributed and secure execution maw be addressed
initiallu through the PTI that is not constrained bw the host
environment.

6. References

£1 Preliminarw Specification of the Common APSE Interface
Set (CAIS) - KAPSE Interface Team CAIS Working Group,
1983-08-08. ''*

E2) Reauirements and Criteria Working Group Workshop -- San_
Iiego, 1983-07-12.

[33 Ada Programming Language ANSI/MIL-ST|-1815A,
1983-01-22.

£43 CSC/NASA Real-Time Ada 8086.

£5) Progran Invocation and Control - KIT Public Report Vol.
2y 1982-10-28.

£6) Distributed Ada ProJect Report - Honewwell SRC, 1983-01.

r7) Swstem Specification for Ada Language Swstem/Navw -

NAVSEA, 1982-10-15.

30-6
!!!!- f

- . 4 . 4 .. . . . . * . .* 4 - * . 4 44. * *~ 44 . .



Position Paper: The Need for a CAIS

Operational Semantics

R. S. Freedman KITIA-WGI/COLMPWG

The specification of CAIS semantics is necessary for the determination

of KAPSE interface compliance. Part of the problem in formulating a -

detailed specification of CAIS semantics is related to our inability to

develop a formal model for program interoperability and transportability.

The requirements and criteria for interoperability and transportability

directly impact the CAIS semantics, since implementations that comply to ...

the CAIS specification are supposed to permit and support interoperable and S

transportable Ada programs.

The existing approaches to specifying CAIS semantics have been based

on the creation of abstract models. The several notations that have been

provided with these models have ranged from highly formal (denotational

semantics), informal (similar to the "structured" English found in the Ada

RM), to somewhere in between (the abstract machine approach). All of these

abstract models have the property of being independent of a particular

implementation. This is an important property in view of the fact that the

' CAIS is supposed to be a "machine independent" specification. However ,

because of the disagreements over the exact support needed for "

interoperability and transportability, the specification of CAIS semantics S

in terms of an abstract model may be a bit premature.

It is advocated that an operational semantics for the CAIS be

developed, in parailel to the existing abstract approaches. The S

* development of a CAIS operational semantics would have the advantage of

rapidly revealing possible ambiguities in the CAIS specifications. A

secondary advantage would be in the ability of rapidly prototyping and
testing different implementation strategies, in order to verify concept _

. feasibility associated with program interoperability and transportability.

3P-1 .

. . . . . . .. . . . . . . - - -. - - -. . . .



In particular, interoperability and transportability can also be given an

operational definition associated with the performance and behavior of an

Ada program that utilizes the CAIS operational specification. A progr am .

that uses the CAIS packages and vbose actual behavior corresponds exactly

to its predicted behavior can be considered to be (operationally) a

transportable and interoperable program.

The development of an operational semantics is not the only method

available for specifying CAIS semantics; however, it may be the only formal

method available that may help the CAIS designers test their ideas. The

operational approach also has a good legacy in the Ada program: the NYU

Ada/ED project showed the advantages of building an operational

specification of the Ada language even before the language design was

frozen. An operational semantics for the CAIS would have similar benefits. .

3P-2

2.. .



TOWARD A FORMAL SEMANTICS
FOR THE CAIS
Larry Yelowitz
Ford Aerospace & Communications Corp.

1. Introduction

This paper is the first in what is hoped will be a series
culminating in a formal semantics for all (or most) of the
CAIS. One of the ubiquitous commnts received from the
public review of CAIS 1.1 is the need for a semantics.
There are a variety of methods for presenting a formal
semantics, eg, axiomatic, algebraic, 6notational, etc.
There is no escaping the fact that some degree of
mathematical maturity is required to comprehend any formal
semantics. It is my feeling, however, that the semantics
presented here, which is a variant of the axiomatic method, VP
is the most comprehensible to the largest set of serious
readers of the CAIS.

1.1 Issues Involving Involved In Presenting
Semantics of a System

The following issues are involved in presenting semantics of

a system:

1.• Notation to describe states of the system. Desirable
properties of the notation are that it have a clear
syntax and semantics, and thus be amenable to machine
checking for errors.

2. Axioms and proof rules for proving theorems in the
system.

3. Specific system dependent axioms which characterize
the system under investigation. Sometimes this set of
axioms is known as winvariants" (since they are
required to be true in the initial state, and to
remain true under state changes).* Sometimes this set
of axioms is called Olaw and order" assertions or
invariants.

4. Mechanisms by which state changes may occur. Notation .0

is needed for specifying the new state in terms of the "- .. '"
old. There are advantages in specifying the state c.--.-,"
transitions "nonprooedurally*, ie, the new state is
given directly in terms of the old, rather than by a
step-by-step procedure which visits numerousintermediate states along the way.

3Q-1 "V._ _ _.



5S. Mechanisms by which the notation describing state
transitions may be mapped into candidate theorems in
the notation describing states. Such mechanisms are
generally called "verification condition generators".
The candidate theorems have the property that if they
are valid, then the invariants really are invariant
under the state transitions.

6.* Proof that the candidate theorems are valid.

1.2 A Trivial Example

We first present a trivial example to exemplify the six
aspects.

1. The notation for describing states is high school
level algebra over the integers. (We skip a formal
presentation of this notation).

2. The axioms and proof rules are the familiar
associative, distributive, coumutative slaws", etc.,
plus various axioms on the equality relation Cog,
"equals added to equals are equal).

3. The law and order invariant is: y - 3*x, where x and y
are named entities in the system. (We assume that x-
and y are initialized so this invariant is true).-

4. The mechanism by which the state my change is given
as follows:
procedure UPDATE,
out y - in y+31
out x -in w+11

This is a nonprocedural description of the effect that
UPDATE must have on the state, is, the value of y in
the new state must equal the value of y in the old
state plus 3, and the value of x in the new state must
be 1 greater than the value of x in the old state. it
is tempting (especially for programrs in languages
in which the assignment operator and equality
predicate are the sm symbol, eg, Fortran) to view
this description as a procedure. It is not. This
description simply characterize* the net effect that
any procedural implementation must satisfy. There are
an infinite number of procedures which satisfy these
specifications.

S. The verification condition generator must transform
the semantics of UPDATE to candidate theorems in the
problem domain of integers. For example, the problem

3Q-2



S

domain does not include reserved words "in" and "Out",

so the vcg must somehow eliminate them, while
preserving the semantics. Various methods of spath
analysis" have been proposed by researchers in program
verification. Using "forward" path analysis, the
candidate theorem would bet

A. y-3*x-

a. x'-x+1-

C. y'=y+3;

D. Based on the above hypotheses, prove: ylm3*x'.

6. The proof that the candidate theorem is valid can be
given simply based on axioms for equality and the
distributive law.

1.3 How the Semantics Relate to the CAIS

In this subsection we discuss briefly the relationship of
each of the six aspects of semantics to the CAlS, and
indicate in which section of this paper it is dealt with.

I. Notation for describing states: states in the CAIS

are described in terms of a directed graph model, with
nodes, arcs, arc labels, paths, trees, connectivity,
and related notions* This notation is presented in

Section 2. Section 2.1 presents notation dealing with
the digraph notions just mentioned. Section 2.2 _
presents additional notation to particularize the

discussion to the CAIS, eg, by presenting notions such
a users and top level nodes.

2. Axioms and proof rules for proving theorems in the
domain of digraphs: This version of the paper is weak
in this area. We rely on the reader to have some

intuitive feeling for such proof rules. For example:
given a suitable axiomatization, the following theorem
is provable: If there is a path from node x to node
y, and a path from node y to node x, then there is a
cycle.

S

3. The invariants which give the CAlS its specific
properties are given in Section 3. The notation for
stating the invariants uses first order predicate

calculus, plus the digraph notation. My feeling in
that the invariants form a good basis for CAIS 1.1,
sections 3, 4, and 5 (CAI$ Node Model, CAIS Structural S
Nodes, and CAIS File Nodes). That is, although

3Q-3 

- - ; a mid. .|



) e

additional assertions are undoubtedly going to be !
required, they will be of the same genre as the
assertions given in this version of the paper. On the
other hand, I expect that additional assertions of a
rather different genre will be needed for the
semantics of the other sections of CAXS 1.1 ( CAIS J" 

"°

Process Nodes, CAIS Device Nodes, and CAlS Utilities).

4. State transitions are specified using notation similar
to that in the trivial example above. We borrow
heavily from the language ANNA (Draft: Reference
Manual for ANNA: A Language for Annotating Ada

8A Programs, Luckham et. al]. Section 4 provides formal
state transitions for Copyode, CopyTree, and
Rename, from package CAIS NODEMANAGEJUNT.

5. The verification condition generator is not dealt with
in this version of the paper.

6. Proofs that the law and order assertions remain
invariant is given casually in this version of the
paper.

1.4 An Explanation of Notation

1. We use "forall" and "exist" as the predicate calculus

quantifiers.

2. INSET refers to the two place predicate, normally
written as an epsilon, dealing with set membership.
Eg, x INSET A says that the element x is a member of
the set A. - -

3. UNION refers to set union.

4. If A is a set, 2**A denotes the power set of A, is,
the set of all subsets of A.

5. In presenting the semantics of procedures, we first
give a list of assertions describing the exceptions
that may be raised, in the form:
raise exception name -> booleancondtion.

The symbol "->" is simply a lexical delimiter, NOT the
implication sign. The semantics is that if the given
exception name is propagated by the procedure, then
the boolean condition is true at the point in time at
which the exception handler receives the propagation.

After the assertions characterizing which exceptions
may be propagated have been given, there are a series

3Q-4



0

of assertions characterizing the new state in terms of .

the old. Although these assertions are necessarily
listed in some sequence, the semantics is that the new
.ttate in derived instantaneously from the old, Le, all
L e effects become true in one fell swoop. (This is
a-.,logous to concurrent assignment, as opposed to
sequential assignment statements in some programing
languages).

6. Loqical implication is given by the symbol ".>a.

2. Directed Graph Properties of the CAIS

2.1 Underlying Notation and Definitions

1. N -A, is a dynamic set of nodes.

2. Lcs in a dynamic set of arcs, is, ARCS SUBSET Nodes x

Nc'es. A given arc may be referred to either as

(n*,n2", or more abstractly simply as, eg, "a". In
t.R. I1 ,ter case, we establish correspondence with the
fc-mer iotation by referring to SOURCE(a) and SINK(s)
to ::-sent the appropriate nodes.

3. Labt j a set of labels that are associated with

Arcs. 72 ere is a function Label: Arcs -> Labels
provi. . q the label associated with a given arc.
Labr'. it an abstraction of the relation name, or the

(relat. i name, relation key) pair associated with
each az.. in the CAIS.

4. Labels* is a sequence of elements from Labels,
including the null sequence. For a given element,
seq, from Labls, there are the following

definitions:

A. Length(seq) is an integer >- 0, providing the
length. In later versions of this paper, Length
can be defined formally.

B. seq(i) refers to the ith element of the seq.
seq(i..J) refers to the "slice" of seq
consisting of elements i through j inclusivei
undefined if J<i. The following items can be
defined in terms of seq(i) or seq[i..j), but it
is sometimes helpful to have the following
notation also.

C. First(seq) is the first element of seq, provided 0
Length(seq) >0. First in undefined otherwise.

3Q- 5



D. Tail(seq) is seq with the first element deletedi
undefined if Length(seq) -0.

E. Last(seq) is the last element of seq; undefined
if Length(seq) - 0.

F. AllButLast(seq) is seq with the last element
deletedi undefined if Length(seq) - 0.

5. OutgoingArcs: Nodes -> 2**Arcs is a function providing
for each node, a set of outgoing arcs from that node.
That is, a INSET OutgoingArcs(n) iff exist ni. INSET
Nodes at (n,nl) INSET Arcs and SOURCE(a) - n and
SINK(a) - n1.

6. IncomingArcs: Nodes -> 2**Arcs is a function providng
for each node, a set of incoming arcs into that node.

7. IsPrimaryArc: Arcs -> itrue,falsA is a predicate
partitioning the set of arcs into primary and
nonprimary arcs.

8. The following functional property must hold regarding
arc labels: (forall n INSET Nodes) (forall al,a2 INSET .
Arcs) (al INSET Outgoingkrcs(n) and a2 INSET
OutgoingArcs(n) and al /- a2 -> Label(al) /
Label(a2)). That is, distinct arcs emanating from the
same node must have distinct labels.

9. TargetNode: Nodes x Labels -> Nodes -def
TargetNode(x,R) - y iff (x,y) INSET Arcs and
Label((x,y)) - R. Undefined if there is no node y
with this property.

10. For a given x,y INSET Nodes, R INSET Labels, we have
the following definitions:

A. P(x,R,y) -def (x,y) INSET Arcs,
IsPrimary((x,y)), and Label((x,y)) - R.

B. S(x,R,y) =def (xy) INSET Arcs, not
IsPrimary((x,y)), and Label((x,y)) - R.

C. D(x,R,y) =def (x,y) INSET Arcs, and Label((x,y))
= R.

In other words P(x,R,y) means there is a primary arc
from x to y with label R; S(x,R,y) means there is a
nonprimary arc (ie, Secondary arc) from x to y with
label R, and D(x,R,y) means there is an arc, either
primary or secondary (is, Don't care) from x to y with -'
label R.

3Q-6

. .. 7



U 11. Having defined PO, So, and Do, we now define their0
closure as follows. For a given x,y INSET Nodes, seq
INSET Labels*:

P*(x,seqy) indef (Length(seq) -0 and x-y)

* or0

(length( seq) >0 and exist z INSET Nodes

MPx, first(seq), z) and P*(z,tail(seq),y).

12. S*(x,s*q,y) -def (Longth(seq) -0 and x-y)

or

(length(seq) >0 and exist z INSET Nodes

(S(x, first(seq), z) and S*(z,tail(seq),y).

13. D*(x,seq,y) indef CLength(seq) -0 and xiny)

or

S (length(seq) >0 and exist z INSET Nodes

(D(x, first(seq), z) and D*(z,tail(seq),y).

14.* There is a specially designated node, SystenaootNods.
(This may be a fiction of the formal semantics,U without a counterpart in the actual CAIS. The purpose
is to provide logical notation for stating various
properties, such as the tree property given next).

15.* The nodes form a tree with respect to primary arcs.
We have enough mechanism now to state this property
f'rmally, as the following two subproperties:

A. (There is a primary path from SystemRootNode to
all nodes). (forall n INSET Nodes)(exist seq
INSET Labels*) P*(SystemRootNodoseq~n)*

a. (The primary path to a given node is unique)
(for all n1, n2 INSET Nodes)(forall seql,seq2
INSET Labels') (P*(nl,seql,n2) and
P*(nl,seq2,n2) -> seq1mseq2).

16. TreeSet: Nodes -> 2**Nodes is defined as follows:

TreeSet(n) -def InIlexist seq INSET Labels*

3Q-7



P*(nseq,nl)t

Thus, for a given node n, TreeSet(n) in the set of all

nodes reachable from n following only primary arcs.

2.2 Notation and Definitions Specific to the CAIS -

1. There is the following partitioning of Nodes into four
subsets: ProcessNodes, Structural~odei, FileNodes,
and DeviceNodes. There is a subset of Processmodes
known as RootProcesaNodes. There is a subset of nodes
known as TopLevelNodes.

2. There is a set of users, known as Users. For
simplicity in this version of the formal semantics,
the following assumptions are made:

A. Users is a fixed static set.

B. A given user may be logged on to the CAIS at
most once at any time. (We will deal formally
with the notion of *logged on" below).

3. TopLevelNode: Users -> TopLevelNodes is a function
providing the top level node associated with a given
user.

4. UserAssociatedWith : TopLevelNodes -> Users is the
inverse function of TopLevelNodes. Below we
generalize the domain of UserAssociatedWith.. .

5. NodeStatus: Nodes -> lOpened,Closed,Deletedt.

6. Loggedln: Users-> 1true,falset.

7. LoggedInUsers -def juqu INSET Users and Loggedln(u)t.

S. IsTopLevelNode: Nodes -> itrue,falset. -- true only
for top level nodes.

9. UserName: Users-> string.

10. Jobdame: Users -> string UNION Iundefinedt. JobName
for a given user is defined iff the user is logged in,

(forall u INSET Users)(JobName(u) INSET string <->
Loggedln(u)).

3Q-8 L

......./.iiX '" "'"""""% " ''"" ""°"" """ """"'"' """ " "'



1 1. RootProcessNode: LoggedInUs -> RootProcessNoden is 0

a function providing the RootProcessNode for a given
logged in user.

12. TreeRoot: ProcessNodes - SystemProcessNode ->
RootProcessNodes is defined as follows: TreeRoot(x) 

* x if x INSET RootProcesuNodes * For x not in
RootProcessNodes, TreeRoot(x) -def y, where y has the
following properties:

A. y INSET RootProcessNodes.

B. x INSET TreeSet(y), ie, there is a primary path 9
from y to x.

For TreeRoot to be well defined, we need an assertion
that there is always a unique y satisfying these two
properties. This assertion is given below.

3. Assertions Characterizing the CAIS

The following assertions are intended to hold true in all
states of a CAIS.

1. (forall u INSET LoggedInUsers)

S(TopLevelNode(u), (JOB,Jobname~u) )RootProcessNode(u)).

That is starting from the top level node of a given
logged in user, and following the (JOB, jon )-me)
secondary arc, the root process node for that user is
reached.

A. (forall x,y INSET Nodes)(x/-y -"
TargetNode(x,JOB) /- TargetNode(y,JO)). That
is, there is no way to reach a single
RootProcessNode from two distinct nodes by
following the JOB label. S

B. (forall x INSET RootProcessNodes)(exist y INSET
TopLevelNodes)
(exist name INSET string)
S(y, (JOB,name),x).

That is, there is a one-to-one mapping between
root process nodes, and top level nodes. The
CAIS has the label JOB to get from the latter to
the former, but does not have a special named
relation to get from the former to the latter.
For the moment, let us refer to y as
JOB INVERSZ(X).

3Q-9
LS

~*-*.** .. . . . . . . . . . . . . .



We can now generalize the domain of the function
UserAssociatedWith which was given above on the domain
TopLevelNodes. We extend the domain to include
ProcessNodes. The definition is that
UserAssociatedWith a root process node x equals
UserAsuociatedWith(JOB INVERSE(x)). For a process
node x not in the set RootProoesmNodes,
UserAssociatedWith(x) -def
UserhssociatedWith (TreeRoot (x))"

2. (forall U INSET LoggedlnUsers)
S ( SystemProcessNode,
(USER,sername(u) ),TopLevelNode u)).

That is, starting from the (ghost?) SystemProcessNode,
it is possible to reach the top level node of any
given logged in user, by following the secondary arc
(USER, username).

3. (forall p INSET ProcessNodes - RootProoessNodes)
S(p,CURRENT JOB,TreeRoot(p).

That is, in any job tree, every node (other than the
root) points to the root via the secondary arc
CURRENT JOE.

4. (forall p INSET ProcessNodes - SystemProcessNode)
Loggedln(UserAssociatedWith(p)).

That is, for every process node, the associated user
is logged in. - --

5. (forall p INSET ProcessNodes - SystemProcessNode)
S(p,.

CURRENTUSER,TopLevelNode(UserAssociatedWith(p))-

That is, from any process node, by following the
CURRENT USER secondary arc, one reaches the top level
node of the associated user.

6. (forall x,y INSET Nodes, R INSET Label)
P(x,R,y) -> S(y,PARENT,x).

That is, if there is a primary relationship from x to
y, then there is a secondary PARENT relationship from
y to x.

7. (forall x,y INSET Nodes)
S(x,PARENT,y) -> (exist R INSET Label)P(y,Rx).

I--I

This is the converse of the preceding assertion, and

3Q-10 ..., ..-.. . . . . . .

. . . . . . . . . ..'-'-, ....- --.- .. -.. . . . . . ..-..--....-.-o.. . . . . .-..... .-.. .,.. . ...-. ,.. . . . .....-. "". . . .".". . . . . .-"" " " " "° "' : '



states that there can only be a secondary PARET
relationship from x to y if there is a primary
relationship from y to x.

S. The nodes form a tree with respect to primary arcs.
(The formal assertion was given above). 0

9. (forall n INSET Nodes)(exist seq INSET Label)(exist
n1 INSET Nodes)
IsTopLevelNode(nl) and
(forall i INSET ..Length(seq)) seq(i) - PARENT and
S* (n,seq,n1)• 0

That is, Revery node can be traced back to its top
level node by recursively following PARENT
relationships" [CAIS 1.1, p 3-21.

10. (forall n, ni satisfying the previous assertion)
(exist seq INSET Label*)
P*(nl,seq,n).

That is, *the path obtained by inverting this chain is
the unique primary path to the node." [CAIS 1A, p3-
2].

S1. There is a functional property with respect to arc
labels on outgoing arcs from a given node. (The
formal asserion was given above).

12. (forall p INSET ProcessNodes - RootProcessNodes)i (exist unique r INSET RootProcessNode)
p INSET TreeSet(r).

This assertion is needed for the definition of
TreeRoot given above to be well-formed.

4. Semantics of Selected Procedures

In this section is provided semantics of certain procedures,
plus an informal analysis of whether the law and order
assertions remain invariant after the procedure has caused
its effect, given that the assertions are true prior to the
procedure call. The semantics would normally be given by
providing pro- and postconditions, characterizing the state
before and after the procedure call. In these procedures,

* there is no precondition (or more precisely, the
precondition defaults to TRnE). The postconditions also
indicate various exceptions that may be raised, and the

3Q-11

-.- - *.. . - -. . . . . . . . . . .

• . - "- " "-p'o °% * , o - "- - o " - - . • - " ", - " ". - •• - • • - . ° . "hrlm . o •-. o •. , - . . . """



IR1

state of the system at the time such exceptions are
propagated.

4.1 The Procedure Copy-.Node

procedure Copy_ Node(x,y: in Nodes):

1. raise USE ERROR ->x INSET ProcessNodes UNION
DeviceNodes:s

2.* raise USEERROR m>y INSET ProcessNodes UNION
DeviceNods a

-- if either x or y is a process or a device node, the exception
-- USE ERROR is returned.

3. raise USE ERROR -> (exist z INSET Nodes)(exist R
INSET Labels_)P(x,R,z)g
-- if there is any primary relationship emanating out of x, raise USE ERROR.

-- Assuming that none of the above exceptions is propagated, the following
-- are the effects of this procedure.

4. (forall z INSET Nodes)(forall R INSET Labels)
(z/-x and in S(x,R,z) -> out S(yR,z))
--all secondary relationships out of x to a nods other than x
--have been copied to y.

5. (forall R INSET Labels)
(in S~xR,x) -> out S(y,Ry))l

-if there were one or more reflexive arcs from x
to itself, then
--these arcs have been copied from y to itself, with

the same labels.

6. (out CONTDITS(y) -in cONTENTS~x))
and

(out ATTRIBUTZS(y) -in ATTRIBUTES(x))
--contents and attributes have been copied from x to 7

y.

7. (in S(y,R,z) and not in S(x,R,z) ->not out S(y,R,z))
--This one might be controversial. It says that all

secondary
-- relations that originally emanated from y have been

deleted,

3Q-12

............................................... . ..............



-- unless they are (re)included as part of the Copy
operation itself.

S.* -- An alternative might be to make y a newly created
node, in which

-- case there would not be any ars coming from y in
the precondition state.

-- In this case the last effect written above could be
replaced by

-- the following:
y not INSET in Nodes and y INSET out Nodes-

4.1.1 Analysis of Coy Node Semantics In this section we
informally analyze whether the law and order assertions
given above remain invariant under the semantics of
CopyNode. If y is a newly created node, then there is one
problem area: invariant 7 may be violated in the new state,
since it is possible for y to have copied a PARNT
relationship from x, much that the pointed-to node is not a
parent of y. If y is not a newly created node, then there
are several potential violations of the invariants:

1. Invariant I may be violated if y is a TopLevelflode:
the JOB relationship out of y leading to some -AR
RootProcessmode may have been deleted. Invariant 1A
may also be violated, since there may be two arcs
pointing to a root process node, each labeled with the
same (JOn,name).

* 2. Invariant 2 may be violated if y is SystemProcesaode.
Important secondary relationships may have been
deleted. Z

3. Invariant 6 may be violated since the original PAI.T
out of y may have been deleted.

4.2 CopyTree Semantics .

procedure CopyTree(FROM, TO BASE: in Nodes;
(To Rel,To Key): Labels) .

1. raise USE ERROR -> (exist z INSET Tree(FROM))(z INSET _

UNION DeviceNodes)"
--if there are any process nodes or device nodes in

the FROM tree,
--raise USE ERROR exception.

3Q-1 3
" v. 3'-13 ......



2. (exist y INSET out Nodes)(y not INSET in Nodes and out
P(TO BASE, (ToRel,To Key),y) and out
S(y,;arent,TO iASE)u
--a new node, y, has been created, whose parent is

TO BASE. y will
--be the root of the copied tree.
--Let us refer to this y 'as NevRoot.

3. (forall z INSET Tree(FRDM))(forall seq INSET Labels*)
(exist w INSET out Nodes)
(w not INSET in Nodes and (in P*(FRDM,seq,z) -> out

P* (NevRoot,seq,w))
-- The basic tree structure has been copiedy ie, every

primary
-path emanating from FROM has a corresponding

primary path
-- emanating from y, leading to a newly created node

w.

4. Definition: (forall z INSET in Tree(FROM))(forall w
INSET out Tree(NewRoot)), we define w to be
CorrespondingNode (z) if f
(forall seq INSET Labels*)(in P*(FROM,seq,z) ->out

P*(y,seq,w)). That in, w equals CorrespondingNoda(z)
if f w occupies the same relative position in the
copied tree that z occupies in the original tree.

S. (forall zl,z2 INSET Tree(FROM))(forall R INSET Labels)
(in S(zl,R,z2) -> out

S(CorrespondingNode(zl ),R,CorrespondingNode (z2) )
-- all secondary relationships strictly within the

original tree have
-- been recreated in the copied tree.

6. (forall z1 INSET Tree(FRO))(forall z2 not INSET
Tree FOWN)
(forall R INSET Labels)
(in S(z1,R,z2) -> out S(CorrespondingNode(z1),R,z2))j
--all secondary relationships emanating from the
original tree
--to a node outside the original tree have been
copied so they
-- also emanate from the corresponding node in the

copied tree and
-- terminate at the s pointed-to node.

7. (forall z1 INSET Tree (FRM)) (f orall z2 INSET out
Nodes)

(z2 - CorrespondingNode (z1) -> (out CONTENTS (z2) -in

CONTNTSWz)
and OUT ATTRIBUTES(z2)- in ATTRIBUTES(z)))

3Q-1~4



-- Nodes and attributes have been copied i addition
to the

-- tree structure.

4.2.1 Analysis of COPY Tree The following invariants may
be violated by the Copy Tree semantics:

1.* Invariant 7s This may be violated for NewRoot since
the semantics call for the PARENT relationship to
duplicate the PARE2NT relationship out of PFON. In
addition, Invariant 1 may be violated since there my
be tvo outgoing PARENT arcs emanating from y.

4.3 Semantics of RENAME

procedure REIM C(Rename lode ,NewParentNode: Wodesj
nellation: Label)x

1.* raise USE ERAOR -)NewParentNode INSET in
Trese(Ren ame dIode)i

-- if the node which we would like to be the new
parent is already
-- in the tree of the renamed node, then there would

be a circularity
-- among primary arcs if we were to put a now primary

arc from
-- New~arentNode to Renamedode * Thus an exception is ..-

raised.

3 2. raise USE-ERROR -> (exist x INSET in
Nodes)W(/iRenamelmode and

In P(NewPrentNode,newRelation,x)):
-- If the parent node already bears the desired

relation name to
-- some other node, then raise USX ERROR. Otherewise,

there would
-- be two primary arcs out of the parent node vith the

sams label.

3.* out P(CNewParent~ode, newRlation, Renameelde),
-- The desired primary relationship has been created.

4.* out SC RenamdNode ,PAREN,NewParentNode)i
-- The corresponding secondary PARENT relationship has ..-

been created. (fozall n INSET Nodes)forall R INSET
Labels)

Cn/inewfrentNode -> not out P~n,R,Renamedflode)j
-- In the new state, there is no node other than

Nev~arentfode which
-- bears a primary relationship to Renamed~ode.

3Q-15



1 4.3.*1 Analysis of RENAME The invariants appear to remain
invariant under the semant ics of RENAME. Note that if the
renamed node is a process node, the UserftssociatedWith it
may change. This might be an unintended side effect.

3Q-16



UNIX AS THE CAIS?

Richard Thall

$ofTech, Inc.

In the course of creating both the Common APSE Interface Set (CAIS) and
the Ada* Language System (AIS), the author has often been confronted with the
question of why the UNIX** operating system interfaces are not adopted as the
Comon APSE Interface Set. It is also suggested that the UNIX tool set be
used as a base for a standard KPSE. Some UNIX tools, such as MAKE, have a
particularly devoted following. The suggestion to use UNIX has some
attractive benefits and some serious problems. This paper discusses some of -
the motivations and benefits for using UNIX and contrasts these with the .0
potential problems.

The motivations behind the suggestion to adopt UNIX include:

o the use of a proven, flexible operating system,
vis-a-vis a non-existent and unproven CAIS, 0

o the proven portability of UNIX vis-a-vis the
questionable portability of the rather complex MIS,

o the popularity of UNIX would provide a large initial
user base, easing the cost and trauma of introducing
the CAIS,

o the existence of a ready pool of knowlegeable support
programmers,

o the existence of a large library of tools providing
a rich base for Ada programing environments,

Some favor the adoption of UNIX as a model or base for the CAIS. This .'-

would substantially simplify the problem of CAIS design and reduce the risks
involved in implmantation. The advantages of adopting UNIX are clearly
substantial and difficult to dismiss. However, there are significant problems
to be addressed on political, administrative, and technical fronts.

Ad ra ib a registered trademark of the U.S. Department of Defense (Ada
joint Progra Office) OUSUM (MGAT).
**UNIX is a trademark of AT&T Bell Laboratories.

3R-1

. . . .. • .



The author believes that a UNIX-based "CAIS" already exists, the AIS.
UNIX was used as a model for the design of the Army's Ada Language System. The
adoption of a CAIS design based much more closely on the ALS is one way to
capture more of the UNIX flavor. The design of the ALS started with UNIX as a
model, simply because UNIX has a track record of proven portability; and
portability is the first requirement of the STONEMAN. 7b UNIX were added
capabilities that were necessary to satisfy the DoD requirements as set forth
in the STONEM4AN. These are:

a. attributes and associations for easier file structuring,

b. pathnames and a command language which are syntactically closer to
Ada,

c. teams, user lists, append access, attribute change access, and via
access for better access control needed to control program libraries,

d. revisions, variations, unique identifiers, sharing, and derivations
for configuration management, and

e. task synchronous, process asynchronous input-output.

It would not be unreasonable to characterize the ALS as a form of UNIX which
has been revised to satisfy the STONEAN requirements.

Non-Technical Issues ----------

The three most difficult problems with the adoption of UNIX are not
technical problems at all. They are:

a. Who controls the definition of UNIX?

b. Whlat is the definition of UNIX ?

c. %1ho will support UNIX ?

The first, and very likely the most troublesome, problem is a political
one. UNIX is the property of AT&T, while the CAIS is a public effort being .
carried out by the U.S. DoD with representatives from industry and academia.
Since AT&T owns UNIX, it effectively controls its definition. An entirely
independent CAIS, on the other hand, would be controlled and developed by the
DoD. Maintaining configuration control of a CAIS based upon UNIX, would
require rather intimate coordination between AT&T and DoD. It is far from
clear that either organization would be willing (or even should be willing) to

* submit to the constraints that would be necessary to establish a workable
relationship.

The second problem is establishing a clear definition of UNIX. What is
"standard" UNIX?. Brian Kernighan, one of the originator- if UNIX was once
asked a question like 'in standard UNIX what happens when ... '. His reply wes
"I've never seen an unhacked UNIX." Meaning that even he did not know what a

p 3R-2

.-, . .... ,•,,:,- ..:,:. ,... .: . _.. _,. .,.. ,,, , ., a ,, . ............... ... . .. . .* - .;



"standard" UNIX is. UNIX is a "hackers" system. It invites programmers to 0
"tweek" it. Almost every UNIX installed has some sort of modification that

presents a potential pitfall to the cause of interoperability and
transportability (I&T). AT&T itself has issued many versions of UNIX and ..

there are endless UNIX look-alikes which sometimes differ in important
details. Suppose, however, a standard could be agreed upon, who would control
it? Dealing with AT&T could be prohibitively expensive for the Goverrinent and S
for users. It would also tend to introduce a substantial amount of technical
inertia in the initial design. (Although the author believes that this is . -.

mora likely to be beneficial than not).

UNIX source licenses typically cost about $50,000 on a per-CPU basis.
would each CAIS using a modified UNIX require a source license? Copies of .
Berkeley UNIX cost about $40,200; $40,000 to AT&T for a license and $200 to
Berkeley to cover distribution costs. It is possible that the DoD could make
some master licensing agreement with AT&T. However, AT&T would view this, and
rightly so, as handing DoD a major market-share and would require concomitant
compensation. Tens of millions of dollars would be about the expected order
of magnitude for opening negotiations.

The third problem is to establish a clear supplier of support for the
standard. When the Army was starting the ALS, they did make an explicit
decision to use VMS instead of UNIX. The reason was that they would have to
support UNIX themselves, but VMS is fully supported by Digital Equipment. The
decision has proved to be a wise one. VMS is a very robust operating system.
It has a wide number of services. It seldom crashes. In developing the ALS
no VMS modifications were ever needed. However, SofTech did need to modify
Version 6 UNIX in order to get a much simpler UNIX-based enviroment running
properly. I am not suggesting that VMS be adopted as a standard, but only
pointing out that one organization, the US Army, felt that the support issue
was significant enough to influence the acquisition decision. Even the Army
did not want to undertake the job of providing ongoing support for an

* operating system. The Army is not alone in this. In developing the CAIS, we
can expect that changes to UNIX will be needed. Who will service the modified
UNIX for Ada users? In the past, UNIX has been a do-it-yourself operating
system. But this is clearly inacceptable to the Ada and DoD communities where

* standardization is to be scrupulously maintained. If we must use a modified
form of UNIX, then have we not obviated the advantages of using UNIX in the
first place?

A significant step toward a solution for these problems has been made by
AT&T. In January of 1983, AT&T announced UNIX System V, promised to develop

L it in an upward-compatible and controlled way, began selling support for
source licensees, and pledged to work with the user community to establish .
UNIX standards. Since that time, AT&T has worked with "/usr/groupu to publish
C library standards and command syntax standards, and is now working to
publish system call standards. At the same time, AT&T signed porting
agreements with several vendors and has developed a UNIX system certification
test which defines an implementation as being in conformance with UNIX System
V. At the January 1984 Usenix conference in Washington, D.C., Jack Scanlon, 7
Vice President of the Processors and Systems Software Division of AT&T
Technologies, pledged AT&T to remain committed to this definition of the base
UNIX system.

From these activities, it is clear that a standard definition of UNIX is
merging and that AT&T is committed to its promotion and support. It is also 0
clear that AT&T is presently interested in the porting of UNIX to any and all
vendor hardware. However, is this the standard that will answer DoD
requirements? hat will DoD users pay for using this standard? hat will they
gain? How will DoD control the evolution of such a standard? Will AT&T's

3R-3

* * . **......-.. . * ** ***. *\** ....-.. "...* . °



recent entry into the hardware market eventually compromise the present
commitment to UNIX portability?

Technical Issues- -- -- -- -- -

The major technical problem with UNIX is:

a. How is Ada tasking to be supported?

other technical problems are:

b. Most MNIX implementations have a 14 character limit on node names.

c. UNIX traverses directory structures sequentially (slowly).

d. UNIX has no built-in support for configuration management (revisions,
etc.) .

e. UNIX has a rather limited access control model.

f. With minor exceptions, UNIX supports only a strict hierarchical file
structure.

g. There are no definable node attributes in UNIX.

h. In spite of the recent wave of discovery, the UNIX design is well
over a decade old.

* The major technical drawback of UNIX has to do with support of Ada
tasking on a computer running UNIX. An Ada program consists of a nuber of
asynchronously executing tasks. When one task waits for completion of an

* input-output (10) operation, the other tasks continue executing. Tasks are
synchronized at discrete points with the rendezvous mechanism. Rendezvous are
intended to occur very frequently, and they are intended to be serviced very

* quickly. Ada tasks can be allocated and deallocated very quickly. There can
be an arbitrary number of them, hundreds, or even thousands.

- - A UNIX system executes a number of processes. Generally, the nuber of-
* processes is limited by the size of a static table. UNIX systems are

typically configured for 50 or 100 processes to service the users with a dozen
* or so processes dedicated to system chores. In "standard" UNIX, 10 is process

synchronous; in other words, when a process issues an 10 request, the whole
process waits until the request is satisfied.This is not quite as bad as it-
sounds. First, the process does not have to wait long for output requests to
be satisfied. The process needs to wait only until the operating system has
moved the output to an in-memory buffer. an~ input from a terminal, the
operation can be bypassed if there is no input irmediately available; in which
case the reed can be retried later. This prevents the process from becoming
blocked when waiting for direct input from a user. However, for an input
operation from a device other than a terminal, a UNIX process waits until the
operation is physically completed. There are a number of privately modified
UNIxs that do process asynchronous 10 for real-time applications.

Before examining this problem in detail, it is important to draw the
3R14



distinction between the roles of the Ada Programing Support Erwironment S
(APSE) host and the Ada target. UNIX was designed to serve as a rich
software development host; a goal that most will agree has been well achieved.
LNIX was never intended to be used as a high-performance real-time target. In

serving as a base for a CAIS, or a replacement for a CAIS, it is entirely
sufficient that UNIX fulfill the APSE host role. However, an APSE host is also
an Ada target. Certain minimal performance must be provided and full Ada
semantics must be achievable. It is not clear if a degenerate implementation
of tasking is allowed under Ada semantics nor is it easy to discover if such
an implementation is likely to have any unacceptable side effects.

In implementing Ada on UNIX, it will be necessary to, somehow, map Ada
tasks onto LIIX processes. There are four choices:

a. use one UNIX process for each complete Ada program with all its
tasks,

b. use one UNIX process for each Ada task,

c. use one UNIX process for each program with a number of 10 server
processes, or

d. use one UNIX process for each Ada program, but add asynchronous 10
capabilities to UNIX.

The first alternative will yield a system where all tasks wait while 10
is completing for any task. While this is definitely outside the spirit of
AMa, we may find that this is acceptable for some classes of APSE hosts.

The second alternative has other problems. The number of tasks that
could be allocated by all concurrently executing Ada programs would be limited
by the size of the UNIX tables. Task allocation would be slow because UNIX
process creation is slow; it was never intended for this type of use (or
abuse). The author does not view this as a feasible alternative.

The third alternative, is a compromise. A predefined small nunber of
server processes are allocated to do 10 for the process executing the Ada
program and a?' of its tasks. Or, alternatively, the Ada tasks are
distributed among a predefined small number of processes. If there are N
servers, then one achieves N-aay concurrency. This may or may not be
acceptable for a given application.

The author regards the last alternative as the most satisfactory, given
the essential design constraints of UNIX. This has already been done in some
privately supported versions of UNIX. There seem to be no serious technical
barriers. While this will not result in a high-performance tasking
implementation, it should satisfy Ada semantics well enough for host use. What
results, however, does not strictly conform to the definition of UNIX. While
"upward" compatibility is unaffected, the ability to move at least some Ada
tools to Onormalu UNIX implementations is sacrificed. Is this acceptable? o

The remaining minor technical items (b-h) are simply a list of the more
obvious limitations that would be visible to Ada users. If UNIX is adopted,
then the Ada coaunity by default, Obuysw the entire list of arbitrary and
not-so-arbitrary UNIX limitations, rules, syntax, semantics, and other aspects
of UNIX culture. This also includes a ready-made list of bizarre tool names
headed by cat and grep. Yes, most of these items are fairly minor and can be
changed. Many of them have been changed in some versions of UNIX, e.g.,
Berkeley UNIX eliminates the 14 character limit on node names and also has a
faster file system. (It is interesting to note that a large share of tin~

3R-5



Berkeley effort was funded by DARPA and other DoD sources.) However, if
-extensive modifications are made for Ada, have we destroyed the benefits of

adopting UNIX in the first place?

If adopted, UNIX interfaces that can be used by Ada tools will have to be
*designed and implemented. A difficult problem will be the management of Ada

program libraries. This has proven to be an exceedingly complex problem whiich
taxes the capabilities of many file system. It is made more complex in UNIX
by the absence of a revision mechanism in the file system and the ratherV primitive access control capabilities. The MAKE tool is often cited as one of
the important benefits of adopting UNIX. However, the need for Mha is
eliminated if a proper Ada program library manager is implemented.

*Conclusion-----------

The advent of UNIX system V is a major step forward in providing a
* definition of UNIX suitable for a standardization effort. This largely
* resolves the definition problem and the support problem, but the problem of
* control and ownership of the standard remains an open question. We must also

ask ourselves the basic question, 'does UNIX meet the lbD requirements?'

Acknowledgements-----------

The author would like to thank J. Eli Lamb of AT&T Bell Laboratories whto
* provided numierous suggestions for improving the technical accuracy and balance

of this paper. The author would also like to thank Tricia Cberndorf for
* suggesting a numnber of clarifications. -

3R-6



Ada

Configuration Management

Workshop

TECHNICAL REPORT

Prepared by

NAVAL OCEAN SYSTEMS CENTER

SAN DIEGO, CALIFORNIA 92152-

Ada JOINT PROGRAM OFFICE

WASHINGTON, D.C. 20301

3S-1



1 SECTION 1I INTRODUCTION

The primary goals of management, when developing a
hardware/software product, are to ensure that the product is delivered
on time and within budget, and to ensure product integrity. Product
integrity is defined to mean that the product meets or exceeds the

-requirements or expectations of the end user. The management -

guidelines for assuring product integrity for hardware products are
better established than those for software products. Typically, when
a hardware/software product is being developed, the techniques for
ensuring product integrity of the hardware are applied in microscopic
detail, while the software is viewed as a single unit to be delivered
upon installation of the total product. The body of techniques
applied to hardware development to ensure product integrity and
timeliness cannot be applied to software development without
substantial modification. Therefore, to aid management in meeting the
above goals with respect to software, the following supporting
disciplines are evolving:

1. Configuration Management (CM)

2. Verification and Validation (VAY)

3. Test and Evaluation (TE)

4. Quality Assurance (QA).

Configuration Management is defined by the Electronic Industries
Assoeliation to be:

o A discipline applying technical and administrative direction
and surveillance to:

1. Identify and document the functional and physical

characteristics of a configuration

2. Control changes to those characteristics

3. Record and report change processing and implementation

status.

h 3S-3



Page 2

A configuration is an aggregation of software components and of
the relationships among the software components. The need for -
software CM arose as the complexity of software increased. With this
increase in complexity, software could no longer be viewed as a single
deliverable product, with no inherent structure, no intermediate ...

deliverables, and no updates after delivery.

Verification and Validation is the discipline that addresses the
issues of software fulfilling performance requirements and of ensuring -'

that specified requirements are stated and interpreted correctly.
Verification is the activity carried out to ascertain whether or not a
product satisfies specified requirements. Validation is a subjective
activity that ensures the end product meets the user's needs.

Test and Evaluation is the discipline that is imposed on the
creating organization by an outside organization. The outside
organization executes pre-defined test procedures to assess whether or
not the product meets the specified requirements.

Quality assurance as a software discipline has not been well "
defined or uniformly treated. In practice, there are four loosely
defined QA models which are applied to the software life cycle.

1. In the first model, QA is a concept, rather than a specific
activity, which begins on the first day of a project and
continues throughout the life cycle of the project. In this
model, quality is achieved through performance of the
activities that comprise CM, V&V, and T&E. -

2. In the second model, QA is a separate activity that is
carried out after CM and consists of V&V and T&E.

3. In the third model, QA is a separate activity that is carried
out after the development of a product and consists of CM,
V&V, and T&E.

4. In the fourth model, QA is a specific activity that is
carried out after CM but precedes V&V and T&E.

The existence of several models underlines the inherent difficulty
of evaluating the quality of a software product.

Early in 1983, the Ada* Joint Program Office became concerned
about these disciplines and their relationship to Ada and emerging Ada
Programming Support Environments (APSEs). Since little formal work
had been done to answer the concerns, it was decided to hold a two-day
workshop on the first and most pressing of the disciplines,
Configuration Management. The Naval Ocean Systems Center together .'-

with the Computer Sciences Corporation organized and hosted a
Configuration Management Workshop (CMW) in San Diego, California, on
7-8 June 1983.

*Ada is a registered trademark of the U.S. Government (Ada Joint
Program Office)

3S-4

.:-:-**':.. . .



Page3 

The attendees (Appendix A) at the CMW were chosen for their
diversity of backgrounds in CM and/or Ada. Representing various
companies and DoD organizations, they brought to the workshop
considerable breadth of experience. They worked in four small groups
whose topics were:

1. CM Definition and Aspects

2. What's Unique About CM for Ada

3. User's CM Needs

4. Tools for Ada CM.

Section 2 of this report contains a bibliography of documents
relative to the CM discussions. Section 3 contains the analysis of
the CM issues that were discussed during the Workshop. Section 4
presents a sumary of the recommendations regarding CM relative to Ada
drawn from the Workshop. Appendices A and B present the Workshop
attendees and agenda respectively. Appendix C presents the workshop
and full session reports. Appendix D presents a Configuration - •
Management Overview distributed to the attendees.

3S-5
. . -. , ..-



Page 4

2 SECTION 2 - BIBLIOGRAPHY

1. Ada Integrated Environment Draft System Specification,
Prepared for Rome Air Development Center, Intermetrics, 15
March 1981.

2. Ada Integrated Environment Interim Technical Report, Prepared
for Rome Air Development Center, Intermetrics, 15 March 1981. -. -"

3. Ada Language System Specification, U.S. Army CECOM, Ft.
Monmouth, NJ, Contract No. DAAK80-80-C-0507, Draft Document
CR-CP-0059-AOO, June 1981.

4. Bersoff, E. H., V. D. Henderson, and S. G. Siegel,
Software Configuration Management, An Investment in Product
Integrity, New Jersey, Prentice-Hall, Inc., 1980.

5. Bryan, W., C. Chadbourne, and S. Siegel, Tutorial:
Software Configuration Management, IEEE Computer Society
Press, EHO 169-3, 1980. "- -

6. Configuration Management System Program Performance
Specification Report, Prepared for Naval Ocean Systems Center
for Contract No. N00123-80-D-0364, Computer Sciences
Corporation, 1 April 1983.

7. Larson, J. A., Tutorial: End User Facilities in the 1980's, -

IEEE Computer Society Press, EH0198-2, 1982.

8. Parikh, G. and N. Zvegintzov, Tutorial on Software
Maintenance, IEEE Computer Society Press, EH0201-4, 1983.

9. Podell, H. J. and M. Weiss, Computers and Business, How
Managers are Using Computers to Support Their
Decision-Making, IEEE Computer Society Press, 1981.

10. Putnam, L. H., Tutorial, Software Cost Estimating and -.-.
Life-Cycle Control: Getting the Software Numbers, IEEE
Computer Society Press, EH0165-1, 1980.

11. Reference Manual for the Ada Programming Language, U.S.
Department of Defense, ANSI/MIL-STD-1815A.

12. SIMON, A Functional Description, Computer Sciences
Corporation, 1983.

13. SIMON, User's Manual, Version 1.0, Draft Document, Computer
Sciences Corporation, June 1983.

14. Feldman, S. I., Make - A Program for Maintaining Computer
Programs, Bell Laboratories, 15 August 1978.

3S-6

. . . . . . . . . .. . . . . . . . . . . **.***. . . . . . .- *- -.



Page5 

3 SECTION 3 - ANALYSIS OF CM ISSUES

This section contains the analysis of the CM issues that were
discussed during the CMW and includes relevant terminology.

3.1 Software Problem Addressed by CM

Software components exist in two basic forms, that is, a
non-derived form and a derived form. The non-derived form includes
specifications (requirements and design), source code, testing
procedures, and other supporting textual information. The derived
forms (i.e., object code and executable code) are obtained from -
non-derived software components and other derived forms through a
translation process, such as compilation. Configuration Management .

maintains such correspondence and identity among software components,
regardless of their form.

On any project the following software activities begin almost .
simultaneously and continue in parallel:

1. Creation of the software

2. Modification of the software S

3. Definition of a configuration of the software

4. Modification of the definition of a configuration of the
software.

The absence of sequentiality in these activities can create chaos
unless the discipline of CM is applied.

The Department of Defense (DoD) has recognized this software _
problem and that CM helps resolve it. Therefore, on 1 May 1979 the
DoD issued directive number 5010.19 for CM on DoD contracts.

In summary, the DoD reinforced the concept that Configuration
Management aids the software creator by providing a mechanism for:

1. Identifying a configuration

2. Controlling changes to a configuration

3. Performing status accounting on a configuration .

4. Auditing a configuration. .-

L 35-.- .-
.-..... i.-o



Page 6

Identification of a configuration is the means of describing the
software components and the relationship existing among the software
components relative to a specified baseline. A baseline is the
content of a cunfiguration at a designated and fixed time during the
software life cycle. Software configuration control consists of
applying procedures to document a change request, approve the change
request, and track the implementation of the change to the baseline of
the configuration. Status accounting is the mechanism for tracking
back to the most immediate baseline of the configuration and reporting
the results. Software configuration auditing is the mechanism for
evaluating the status of the system relative to a pre-defined
baseline. It is in software configuration auditing, as the
disciplines are currently practiced, that software CM overlaps
software V&V. Therefore, this area of CM received less emphasis at
the CMW.

3.2 Software Configuration Identification

Software configuration identification consists of the following
three steps:

1. Identification of the software components

2. Specification of the relationships among the software
components

3. The definition of the baseline.

3.2.1 Identification

It is conmmon practice to divide large software products into
smaller, more manageable software components. As software components
are created, the software creator and the host database management-
system assign a unique identifier to each component. The mere
existence of these software components does not define a configuration
that can be put under configuration management control or that can be
used to define a baseline. Unique naming of software components is
simply the first step necessary to start building a configuration.

3.2.2 Specification of Relationships

For a configuration or baseline to exist, the relationships among *

the components must be defined explicitly in the project database.

3S-8



Page 7

3.2.3 Defining a Baseline

After the relationships among the software components have been
defined they can be uniquely identifiled, put under configuration
smagement control, and then included in a baseline definition. The
definition of the baseline is the final step in the CM identification-.-
process.

3.3 Software Configuration Control

Software configuration control consists of controlling those steps
that must be performed in order to document a change request, approve
the change request, and trace the implementation of the change to the
configuration. In the software life cycle, there are three
identifiable phases for which CM control is necessary:

1. Phase I begins when a software component is created by the
programmier, documentor, or a test team member (i.e., software
creator)

2. Phase II begins when the creator submits a configuration
(consisting of one or more software components) to

Iproject-wide configuration management control. This
configuration may or may not become part of a future
baseline.

3. Phase III begins when the configuration becomes part of the
baseline.

Each of the above phases is in itself an iterative process and the
three as a whole form an additional iterative process. During Phase
1, the software creator has access to the software creator's
workspace, and read-only access to software components in Phase II or
Phase III (i.e., software components that are already under
project-wide configuration control). Further, the software creator
does not have access to any other software creator's workspace. That
is, the software creator may not build software components based on
configurations that are not under . project-wide configuration
management control. Various systems support this concept although
they may use different naming conventions such as Owindowing" or
"sharing%

* When the software creator submits a configuration to Phase II, the
configuration will be reviewed by a separate organization (possibly

*the QA, V&V, or T&E) for acceptance or rejection. If the
configuration is accepted, it will be submitted to another
organization (possibly T&E) for acceptance or rejection into the
baseline. If the configuration is rejected at any approval point in
Phase II, it will be sent back to the software creator for

*modification. The tracking of a rejection in Phase II may be

3S-9



Page 8

informal, because the configuration was not put into the product
baseline.

However, during Phase III, control is very formal, in that the
software creator cannot change the product baseline without formal
approval from an organization such as the Software Configuration
Control Board (SCCB).

3.3.1 Phase I Control

As stated earlier, configuration control during Phase I is very
informal and exists only to the extent that the software creator
chooses to define it. Typically, control during this phase does not
include written change requests, written approvals for changes, or
traces from change requests to actual changes. Rather, this phase is
characterized by rapid creation, modification, and debugging. As a
result, it is very easy for a software creator to forget which
software components are interrelated and the exact sequence of command ..
language commands needed to update the configuration. For example,
after a long edit session, the creator may easily lose track of which
software components have been changed. However, the software creator
should be prevented from building software components based on
software components that are not under Phase II or Phase III control.

3.3.2 Phase II Control

Configuration control in Phase II begins when the software creator
submits an identifiable configuration to another organization such as -
an internal QA, T&E, or V&V organization. Phase II includes all
control activities that exist between the time that the software
creator had unlimited change control (Phase I) and the time that the
software creator has no change control (Phase III). The subjectivity
with which QA, T&E, and V&V are applied to a given product causes
variations in the way controls are passed among the phases. For .
example, during this phase, control may be passed verbally among
reviewing organizations. Therefore, configuration control during
Phase II is not as well defined as control in Phase I or Phase III.

3.3.3 Phase III Control

Configuration control during Phase III is characterized by a
formal sequence of steps that must be followed to change a software --

component in the baseline:

1. A written change request is submitted to the SCCB after a bug

IL 3S-10

• .*° ".-°°°,°. ".., , o...°. ..................................................................-....-... ',..''-



- -.-..-- ... "-.....-...-"°.

Page 9

has been discovered or when a new feature is desired

2. The SCCB evaluates and approves or disapproves the change S
request

3. If a change request is approved, the SCCB assigns the change
request to a software creator who determines which software
components would be affected and modifies them to reflect the
change request

4. The software creator submits the modified software components
for approval, testing , and integration into the baseline.

It was the consensus of the CMW that the above steps should be
automated. In addition, it was noted that Step 2 contains subjective
aspects that cannot be fully automated. Further, it was recognized
that the automation of these steps is within the state-of-the-art.

3.3.4 Summary of Software Configuration Control

In summary, configuration control increases in intensity from
5 Phase I to Phase III. During Phase I, the software creator has I_

unlimited freedom to make changes to his configuration. During Phase
II, there is a wide variation in the application of controls.
However, during Phase III, it is generally agreed that configuration
controls must be strictly enforced. At the CMW, it was stressed that
the controls should be carefully balanced to achieve the following two
goals:

1. Protection of the baseline from unauthorized modification

2. Support of the creator's productivity.

3.4 Software Status Accounting and Reporting .'-.-

Software configuration status accounting is the mechanism by which
the outputs of the other three CM activities (identification, -
controlling, and auditing) are:

1. Recorded and stored in the configuration status accounting
database

2. Reported upon from the above database.

The information stored in the configuration status accounting

3S-11



Page 10

database provides the basis for tracking the evolution of the
project-wide configuration from a given baseline. The information can .
be used to determine such things as productivity, cost to complete the S
product, and impact of rescheduling and reassignment of tasks and
personnel. Also, status accounting can be used to track changes from
the established baseline to the current state of the configuration.
The information derived from this tracking can be used to determine -

whether or not to establish a new baseline.

Software configuration status accounting should be automated
because of the large amount of information recorded and the variety of
reports desired. Automation of these time-consuming and tedious tasks
will increase developer and manager productivity.

3.

.,

. S _-'. .7

0!ii! :

. . . . . .. . . . . . . . . . . . . . . .. . . -.

.. . . . . .-



Page 11

4 SUMMARY

This section sumarizes recomendations, regarding CM relative to
Ada and APSEs, drawn from the Ct4W and from current literature.
included in this summary is a proposal for future CM workshops.

4.1 Recommendations

All CM activities should be automated to the extent that is
possible within the state-of-the-art. CM should not be a burden or
extra activity for the user. That is, as much CM as possible should
be transparent to the user. The parts of CM that are not transparent -

to the user should aid and not hinder the user

It is the responsibility of the CM control activity to maintain
control over project-wide configurations ( i.e., over both the
software components comprising the configuration and the relationships
among the software components). This activity should control neither A.
the contents of the software components (this is a QA function) nor
the definition of the relationships among the software components
(this is a management/technical function). Rather, the CM control
function should have the responsibility for maintaining control over
changes to the baseline of the configuration within a control phase
and across the control phases. Moreover, this activity consists
mainly of bookkeeping.

It is important that CM never be an afterthought to a project but ...-

rather that CM be an integral part of the project from the beginning.
Relative to APS~s, there is the opportunity to include within the APSE
a standard database interface and an integrated toolset that allows CM
to be an integral part of any project.

Since the APSE database interface will be standardized, it is
important that this interface include:

1. The capability for defining a data dictionary (that is, for0
defining the structure and contents of a database) that
supports CM

2. The functional interfaces for easily implementing the CM
activities discussed in this report.

In addition, it is recommiended that the following tools be
included in an integrated CM tool set:

1. A Nbuild" tool that provides a means for the creator to
define and build a view of the project-wide software
configuration for modification

2. Automated "Configuration Objecto builder tools (e.g., one

3S-13



Page 12

such tool will build a "Configuration Objecto for the
compilation and linking order for a software configuration)

3. A "Configuration Object" library manager tool that provides
functional support for Ada program libraries in APSEs.

The CMW concluded that APSEs do not present new CM problems for
development projects. However, emphasis should be placed on this -.

unique opportunity to build an advanced CM system that could be made
available to every DoD contractor. Frequently, time is wasted on
contracts while defining and building a CM system. All of that CM
effort is usually out of the mainstream of the DOD contract and
success with the CM system is usually not realized. APSEs with

WD appropriate CM systems would remedy this situation.

The CMW also concluded that the Ada language does not present new
CM problems. The packaging concept and the separate compilation
facilities provided by the Ada language definition can be aids to CM.
The Ada language, however, does not preclude the need for CM (See
Working Group 2 Report, Appendix C).

3S-.14

.. • -.

-~. - ... . . . . . . .



Page 13 •

4.2 Future CM Workshop

It was abundantly clear that the two-day CMW was not sufficient to
adequately uncover or address all the CM issues. It was agreed,
however, that neither the APSE nor the Ada language present new CM
problems, but rather present opportunities to improve CM and the other
product integrity disciplines (QA, T&E, and V&V). It is recomended
that future CM workshops be held and that they continue to aim 0
discussions explicitly at improving CM in the APSEs. (Prior to the
workshop, position papers should be solicited to limit attendance to
those individuals who have personally contributed to CM on previous
projects.) It is also recommended that the following issues be among
those addressed at future workshops:

1. The database interface to the APSE should be standardized.
Configuration Management issues should be given special
consideration during this standardization process.

2. The amount of human control needed in an APSE CM system
should be investigated. The CM process should not be manual, .0
but it should be identified where it is absolutely necessary
for a human to authenticate the contents of the configuration
management database.

3. It should be determined how CM overlaps with the other
product integrity disciplines (QA, T&E, and V&V) and how all S__
of the product integrity disciplines, not just CM, fit into
an APSE

4. It should be determined how much and what kind of information
should be gathered for what kind of reports for CM on an

3 APSE.

It is also suggested that the name of the workshop eventually be
changed from CMW to Product Integrity Workshop for the DoD. This namechange would broaden the scope and would emphasize the real problem to

be solved. 0

L..

3S-15

-.-

• . .-



-. . . . . . . . . . . . . .

Page A-1

APPENDIX A

ATTENDEES

NAME AND ADDRESS PHONE NO.

Ramesh Babu (408) 942-7703 (Work)
ROLM KSC (408) 554-9972 (Res.)
Mail Stop 150
One River Oaks
Place San Jose, CA 95134

Mitch Bassman (703) 237-2000
CSC ext. 7038
6565 Arlington Blvd., MC 281
Falls Church, VA 22046

Rebecca Bowerman (703) 237-2000 4 -

CSC ext. 6639
6565 Arlington Blvd., MC 281
Falls Church,
VA 22046

Jack Foidl (619) 225-9400 "
TRW DSG
3420 Kenyon St., #202
San Diego, CA 92110

Bob Fritz (619) 293-7500 (SAI)
SAI-Comsystems (619) 225-6515 (NOSC)
2801 Camino Del Rio (619) 485-7702 (Home) " -

San Diego, CA ." -

Alan Goldfine (301) 921-3491
National Bureau of Standards

Technology A-265
Washington, D.C. 20234

Leah Hammond (607) 751-2023
IBM Corp.
Owego, NY 13827

Larry Johnston (215) 441-3145
NADC, Code 503
Warmtinster, PA 18974

3S-16



ATTENDEES Page A-2 0

Bill Jordan/Lloyd Stiles (619) 225-2569

FCDSSA-SD AV 933-2569 0200 Catal ina Blvyd..:: -::. :/

San Diego, CA 92147

Liz Kean (315) 330-4325
RADC/COES AV 587-4325
Griffiss AFB, NY 13441

Henry Lefkovits (617) 456-3517
Alpha Omega Group, Inc.
P.O. Drawer M
Harvard, MA 01451

Gil Myers (619) 225-7401
NOSC, Code 8322
San Diego, CA 92152

Tricia Oberndorf (619) 225-7401
NOSC, Code 8322
San Diego, CA 92152

Alan Olson (619) 225-8401
CSC ext. 251
4045 Hancock St.
San Diego, CA 92110

Brian Ropside (214) 462-5756
TI
P.O. Box 405, MS 3407
Lewisville, TX 75056

Brian Schaar (202) 694-0212
Ada Joint Program Office
Room 3D139 (400 AN)
The Pentagon
Washington, D.C. 20301

Oscar Shapiro (617) 271-2474
Mitre Corp.
Box 208
Bedford, MA

Tom Smith (703) 237-2000
CSC ext. 516 -
6565 Arlington Blvd., MC 281
Falls Church, VA 22046

Dave Vatsaas (612) 456-2893
Sperry Corp.
Computer Systems
Sperry Park
P.O. Box 43525, MS U2T18
St. Paul, MN 55164-0525

3S-17



w w .-- 77!;7. --. I

Page B-1

APPENDIX B

AGENDA

CONFIGURATION MANAGEMENT WORKSHOP

AGENDA

Tuesday, June 7, 1983

0830 - 0900 Arrive

Coffee

0900 - 0930 Welcome and introductory remarks

- Tricla Oberndorf, Chairman

- CSC hosts

Introductions

Each attendee is asked to give their name, organization
background/project that brings them to this workshop,
and a one or two sentence position statement on some CM
issue which should be considered at this workshop. ._-

0930 - 1030 CM Definition (Group discussion)

1030 - 1100 Break

1100 - 1230 CM Experiences (15 minutes each) (prearranged speakers)

- Air Force

- Army

- Navy

- NASA

3S-18

.. . . . . ......•,,.,-... .. ,..-. -..... ,.,..- z:.,,. :(-M---, ,:.-,,,-,'':-'.."



-. . -o ...

AGENDA Page B-2

- AIE

- ALS

1230 - 1400 Lunch -....-

1400- 1430 Industry perspective (prearranged speakers)

1430 - 1500 Organize into the following working groups:

- CM Definition and Aspects

- What's unique about CM for Ada?

- User's CM Needs

- Tools for Ada CM

1500 - 1530 Break

1530 - 1700 Working Groups meet

Wednesday, June 8, 1983

0830 - 0900 Arrive

Coffee .

0900 - 1030 Working group reports (sumarize prior day's efforts)

1030 - 1100 Break

1100 - 1230 Working Groups meet

1230 - 1400 Lunch

1400 - 1500 Working Groups meet

1500 - 1530 Break .

*1530 - 1700 Working groups reports, discussion, conclusions, and
closing

I.. 3S-19

* - . -* ** . - ... . . . .



AGENDA Page B-3

CONFIGURATION MANAGEMENT WORKSHOP

AREAS FOR DISCUSSION

June 7-8, 1983

1. What is configuration management in general? We need a solid
definition from which to start. Questions include whether we
are limiting ourselves to the code or if configuration -

management includes design and other phases and if it
includes other documents besides modules of code. The kinds
of issues we need to resolve are if configuration management
should be restricted to the management of code development
and release, or if it includes the management of documents
related to requirements and design.

2. What new challenges/requirements does Ada impose on
configuration management?

3. What new opportunities does Ada provide for configuration
management?

4. What are the aspects of configuration management? One thinks
of configuration identification, configuration tracking and
reporting, and configuration changing; there are probably
others.

5. What role does the program library and its manager play in
configuration management?

6. What are the project manager's configuration management
needs?

7. What are the programmer's (i.e., implementor's) configuration
management needs?

8. What are the user's configuration management needs?

9. What good leads to configuration management exist (e.g.*,
successful project experience, standard documents)?

10. What contributions do the AIE and ALS make?

11. What experiences have the AIE and ALS implementors had?

12. What experiences have other Ada implementors had?

-4

3S-20

. . . .. . . . . . .



AGENDA Page B-4

CM EXPERIENCE - MILITARY AND INDUSTRY

From 11:00 a.m. to 12:30 p.m. and from 2:00 p.m. to 2:30 p.m., each
person will be given the opportunity to give a five to ten minute
informal talk about one or more of the following issues:

1. A configuration management plan you have written or
implemented

2. A system you have managed or implemented or used that was
under a successful or unsuccessful configuration control plan

3. Any topic on the "Configuration Management Workshop, Areas S
for Discussion" sheet.

A

3S..21

. . .. . . . -



:-- "--..- - - ,' -

Page C-i

( 41

APPENDIX C

WORKSHOP AND FULL SESSION REPORTS

Working Group 1 - CM Definition and Aspects

Chaired by: Alan Olson, CSC
Participants: Jack Foidl, TRW

Leah Hammond, IBM
Oscar Shapiro, Mitre
Ioyd Stiles, FCDSSA-SD

* . Introduction:

The purpose of this working group was to define configuration J
management and discuss the implication of CM on our working
environments.

Issues:

The following issues were discussed:

1. The state of the art for software engineering has come a long
way, but Working Group 1 concurred that millions of lines of
existing code do not perform acceptably. The procedures for
Incorporating the state-of-the-art software technology into
the ALS/N with a high degree of enforcement is critical to a
high quality, cost effective system. CM plays a key role in
accomplishing this objective.

2. It is important to have technical expertise in the Software
Configuration Control Board.

3. The Navy places heavy emphasis on software and hardware
standardization, both near and long term. CM plays a key
role in achieving and maintaining standardization with
respect to documentation and coding standards.

4. The frequency and content of revision releases are the prime
ingredients that determine how readily user sites will employ

3S-22

.5..... . . .... ' -
.*-.:: -:- ... --,. . . .:_ . . * . 5... -,.-. . . -. . - .......... . - .. ... ... ..-. .- . .. . . ... .. . .. . . -. .. . . . .. , --



WORKSHOP AND FULL SESSION REPORTS Page C-2

a new revision and how effective it will be. CM has major
control over these factors and should derive the most cost
effective revision cycle for all products, including user
applications.

5. CM should be automated as much as possible. The very act of
doing anything should invoke the appropriate CM procedures
automatically.

0

6. The CM system should be simple, flexible, and the effort to
implement a change should not be so cumbersome that it
stifles programmer (worker) productivity.

7. The CM database should contain data about the product line,
the software components' derivation histories, and status 6
accounting information.

8. In general, the CM discipline is well defined and widely
employed via many different techniques and procedures. There
are six different situations in which CM will be applied with
respect to Ada: S

1. C4 for Ada support software development

2. CM for APSE development

3. CM for Ada applications (i.e., projects coded in Ada)

4. CM for Ada support software life-cycle maintenance

5. CM for APSE life-cycle maintenance

6. CM for Ada applications life-cycle maintenance.

9. All the standard ingredients of CM apply to each of these
categories. However, a-specific CM methodology needs to be .""

defined and built into the APSEs. A specific CM methodology
could be built into any programming environment, but the
APSEs provide an opportunity to build an ideal CM system from -
the beginning.

3S-23

* ".*.-.*.



...- *. -

WORKSHOP AND FULL SESSION REPORTS Page C-3

Working Group 2 - What's unique about CM for Ada?

Chaired by: Mitch Bassman, CSC

Participants: Bob Fritz, SAI
Alan Goldfine, NBS
Gil Myers, NOSC

Introduction:

This working group was directed to discuss how features unique to
Ada affect the requirements for configuration management.
Participants addressed the Ada Language, Ada Programming Support
Environments, and Ada design methodologies.

Issues:

The following issues were discussed:

1. The fact that a programmer is required to apply a WITH clause
to a compilation unit to define dependencies upon other
library units may facilitate some configuration management
functions. Also, the smarter compilers and linkers, required
to guarantee adherence to the rules of compilation order,
will help CM.

2. An increase in the development and use of reusable software

increases the importance of CM.

3. Generics will introduce some complications.

4. 1/0 issues require no special consideration. I/0 falls under -

generics.

5. CM is needed to keep track of which pragmas, attributes, and
pre-defined exceptions are supported by a given compiler.

6. In a mixed language environment (e.g., ALS/N) it is necessary
to maintain a record of which language is being used in each
source object under configuration control.

7. The existence of a standard programming language and standard
interfaces will facilitate the development of a standard set
of integrated CM tools.

8. CM is needed to keep track of what features are available in
a run-time environment.

9. Using an Ada-based program design language (PDL) will allow
consistent automated CM techniques to be applied throughout
the lifecycle and will promote traceability of the design
throughout the lifecycle as the system written in an
Ada-based PDL evolves into code.

3S-24

.- ,- .- q- q- . ....-.- -. ....... . ............. ........... "......



WORKSHOP AND FULL SESSION REPORTS Page C-4

10. Systems to be coded in Ada are highly likely to be designed
using an Ada-based PDL; this is in contrast to systems
implemented in other languages, which rarely are designed
using a PDL based specifically on the implementation

-. language. .

11. We must be careful not to blur the boundaries between PDL and
code when using an Ada-based PDL. CM requires boundaries.

12. The package concept available in an Ada-based PDL facilitates
the representation of data flow.

13. There is no significant difference between Ada and other
languages for CM. The differences are all matters of detail.

14. Ada is an evolutionary language, not a revolutionary one;
hence, changes in CM based on Ada will be evolutionary, not
revol uti onary.

15. Ada is not a miracle cure for solving the problems of CM.

16. Should automated CM tools in an APSE be visible or invisible
to the user? That is, should a programmer (for example) have
to invoke CM tools explicitly or should the underlying KAPSE
(MAPSE?) manage his configurations for him? If both, what CM
functionality should be applied implicitly and what must bem explicitly requested?

17. It must be possible to determine the relationships between
source file objects and compilation units.

18. If a project imports a package from a public library and
depends upon a specific revision, then it is the
responsibility of the project to configuration manage the use
of the specific revision. If a package in a public library
is updated with a new revision, the CM of the public library
must guarantee that an earlier revision remains in the
library as long as required by any user.

3S-25

. . . . . . . * *.*

. . . . . . . . . . . . . . . . . . . . . . . . .. . .



WORKSHOP AND FULL SESSION REPORTS Page C-5

Working Group 3 - User's CM Needs

Chaired by: Rebecca Bowermar, CSC

Participants: Liz Kean, RADC
Brian Schaar, AJPO

Introduction:

The purpose of this group was to identify the users of a
configuration management system and to identify their configuration
management needs. In pursuing this goal, we avoided the use of
industry or military organizational charts and names. We attempted to
use descriptive words or phrases for the users and their needs.

Issues:

The following issues were discussed:

1. As a group, we support the ideas of fully automating the
configuration process, and to achieve that, we acknowledge
that the human interfaces to the system must be simple and
"user friendly m .

2. In all of our discussions, we found overlapping needs between a-.

configuration management and quality assurance and also
between quality assurance and testing, all of which insure
the integrity of a product.

3. We agreed that the goal of everyone involved in a product was
to produce or to receive a high quality product. We also
agreed on the description of many of the activities that must
be performed to produce or to receive a high quality product.

4. We had some difficulty with definitions and semantics. For

example:

1. How do you assess the quality of a product?

2. Is QA the discipline that includes CM, V&V, and T&E?

3. Is CM just a bookkeeping activity?

4. Where does CM stop and QA begin?

5. For the sake of expediency, we adopted the following
philosophies/definitions:

1. Quality assurance is a "state of mind" that exists
throughout the life of a project

3S-26

-- ..-. . . . . . . . . .
-

. . - ' ''.. ' . ' ' .' . .. . , ', ,. . .. ., ' . . **. .".•. .. ,.-.".. . -.. ' . '.'. " . ' , " . , .. . . . ' .- '- . . . ' -- . ° - .- , , ' - .



WORKSHOP AND FULL SESSION REPORTS Page C-6

2. Quality assurance is also a separate activity consisting
of Test and Evaluation (T&E) and Verification and
Validation (V&V)

3. T&E includes the execution of a set of predefined test
procedures. We avoided the issues of Independent Path
Testing and Complete Path Testing because of limited
time.

Ul 0
4. V&V is a subjective activity that includes reviewing test

results and making Judgement calls relative to specified
requirements. We also did not spend much time on the
details of this activity.

5. CM is all activities required to maintain consistency
among related software components and all activities
required to track changes to a product baseline

6. CM activities are more easily defined and automated than
QA activities. However, there are many'automated tools
that can provide critical input to QA.

6. Figure 1 is an illustration of the steps that we agreed were
necessary for ensuring product integrity. The boxes
represent human interfaces and functions that may be
performed by any organization. The functions may also be
divided among organizations, both internally and externally.
We made every attempt to avoid military and industrial
organizational charts.

3 S2

9

.4 .-:.-. ..



AD-R147 648 KERNEL ADA PROGRAMMING SUPPORT ENVIRONMENT (KRPSE) 5/5
INTERFACE TEAM PUBLIC REPORT VOLUME 4(U) NAVAL OCEAN
SYSTEMS CENTER SAN DIEGO CA P OBERNDORF 30 APR 84

UNCLASSIFIED NO$C/TD-552-YOL-4 F/G 9/2 NL

mIIIIIIIIEEII
mEIIIIIIIIIIIE
IIIIIEIIIIEII
I.IIIIII



L.L L ILI'U

IIIII

S 1111.8
11111_L2511

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUftAU OF STAiOAiOS-,6s-A

m..-.-, .- ,...,,°. , . . . . . . . . .. . - , .: ,. . .• ... . . .. . . , . . .. .... .
. . . . . . .



WORKSHOP AND FULL SESSION REPORTS Page C-8

The START box represents all discussions that take place before a
user with a specific need is identified. The broad line connecting
the NEED to the USER OF PRODUCT emphasizes the inseparability of the
two. But it may also be the case that the NEED is identified at a
higher level than USER. The first step towards getting a product to :,

satisfy a need is to express the need to a PRODUCT MANAGER. The lines
between the USER OF PRODUCT and PRODUCT MANAGER represent open : *.-'

communication between them throughout the life of a product. After -
receiving the description of the need, the PRODUCT MANAGER assigns the
development of the product to a MANAGER OF PRODUCT CREATORS. The term
CREATOR is used to emphasize that software is not just code.

As soon as the CREATORS begin developing the product, the
activities that contribute to product integrity should already be in
place. The consensus of Working Group 3 (WG3) was that, in this stage
of product development, the activities that contribute to product
integrity should be viewed as aids to the CREATOR and not restrictions
on the CREATOR. For example, when the CREATOR is creating and
modifying many software components, it is very likely that the CREATOR
will not correctly recall all the command language commands necessary
to update the CREATOR's configuration. We also discussed the
automatic creation of a "description file" or "configuration file" for 0
the CREATOR. These are the files that contain the definition of the
dependencies among the software components in the CREATOR's
configuration.

The timing for releasing partial development of a product from _ -
CREATORS was not part of WG3's discussion, but rather how and to whom P
the release should occur. The status of a partial release should
occur with the help of an automated tool, to move the partial release
from the CREATOR's workspace to a QUALITY ASSURANCE organization for
review.

The details internal to the QA box were not explicitly agreed .
upon. However, we did agree that if QA rejects a configuration, the
configuration will be returned to the assigned CREATOR. There should
be an automated tool for rejecting a configuration and for
accumulating reporting data for the CREATOR and the MANAGER of the
CREATORS. If QA accepts a configuration, QA integrates it into the
baseline of the product and submits the new baseline to the PRODUCT .
MANAGER for final approval and release.

The final stamp of approval before release should be performed by
the PRODUCT RELEASE CONTROL STAFF within the PRODUCT MANAGER's box.
Although they are routine and non-technical jobs, the jobs of
packaging, of confirming that N copies of each deliverable item are p
included, and of updating final bookkeeping details were acknowledged
as critical to ensuring the integrity of a product.

After the final stamp of approval, the PRODUCT RELEASE CONTROL
STAFF released the product to the MANAGER OF PRODUCT MAINTAINERS. The
PRODUCT MAINTAINERS have special needs for tools or documentation to p
help with learning the details of a product.

These needs seemed to be training issues which were not within the

3S-28
p

:: -:: .: -: - -: : : - '- ' . -. . - . . ' - - - , . -
"



WORKSHOP AND FULL SESSION REPORTS Page C-9 .

scope of WG3's purpose. However, once the 1AINTAINERS are beyond the
training stage, all of their CM needs were virtually identical to
those of the CREATORS. .

At any time in the life cycle of a product, anyone associated with
the product may want to request a change to the baseline. Requests
can come from USER OF PRODUCT, CREATOR, QA, PRODUCT MAINTAINER, or
from inside the PRODUCT MANAGER's organization. There should be one
central body for approving or disapproving changes to the baseline,
namely, the Software Configuration Control Board (SCCB). Although the
SCCB is a human function, there are many reports on the product, that
can be generated from the product database, that can provide valuable
information to the SCCB.

In sumary, it was determined that C4 is one of several .
disciplines that help insure product integrity and that CM consists of
two functions:

1. Tracking, controlling, and reporting communications between
the boxes, to maintain CM over the product as a whole

2. Maintaining consistency among related software components, as
an aid especially within the CREATOR's box and within the
MAINTAINERS' box.

3S-29

. . . . --.. .

. . . . . . . . .. . . .. * . . . .. . . . . . . . . . . .



* WORKSHOP AND FULL SESSION REPORTS Page C-10

Working Group 4 - Tools for Ada Configuration Management -

Chaired by: Thomas Smith, CSC

Participants: Ramesh Babu, ROLM
Larry Johnston, NADC
Henry Lefkovits, Alpha Omega "
Brian Rospide, TI
Dave Vatsaas, Sperry

Introduction:

Tools for Ada Configuration Management (CM) included'the following
areas:

1. procedures and methodologies to perform CM

2. automated software tools to support CM throughout the entire
software life-cycle.

Issues:

The following issues were discussed:

1. CM is a "human activity" that is assisted by the computer.
(*Human activity" here implies that the authentication of
software must be done by humans with the assistance of
automated software tools.)

2. Any kind of CM system imposes an "implicit methodology" for
software development. - .

3. Any "good" software methodology must include a CM methodology
to obtain a coherent approach to useable, reliable, and
maintainable software that satisfies requirements

4. CM should never be an "after thought" for a project.

5. For automated CM software tools the "user" interface is of
paramount importance.

6. Automated CM software tools must be "integrated" and
"transparent". "Integrated" here implies that for any
configuration management system within an APSE the many
functionalities of the system must work in harmony with each
other within the environment; "transparent" here implies
that the program developer (whose software and/or
documentation is being monitored or controlled) would not
have to be actively involved in gathering data for CM.

7. What is a common "minimal" set of automated software tools
for CM?

3S-30

...................... _ ........................................ ,*~.
":N " ,"-" % ' ." :" '" . ': '.-''.''-.'': -,'''" ." ." .' .." -% ,' . .' ." " ," " . , . ", "1 " ... .. . .



WORKSHOP AND FULL SESSION REPORTS Page C-11

8. What classifies as a software "tool"?

9. A problem of automated software tools is the complexity of
these tools and the requirements that these tools impose on
the user (e.g., tools that perform requirement traceability
throughout all stages of the software life-cycle such as
PSL/PSA and SREM).

10. How does one obtain a workable mechanism for obtaining a
"software baseline" using Ada program libraries? The
"baseline" must not be corrupted while the program developers
have accesss to it for the purpose of "unit testing" and
"integration testing".

11. How are Ada program libraries to be recompiled to maintain
consistent "baselines"?

12. With the advent of "off the shelf" and "reuseable" software,
how will a consistent "software baseline" be maintained?

13. The previous three issues also address the issue of the
migration of source and/or object files between Ada program : .
libraries.

14. How will CM handle both the software environment database and
the Ada program library database?

15. Standardization of the interface to the database(s) in an
APSE is of primary importance in addressing the other issues
brought up by this working group.

16. The database interface in an APSE must address Ada program
library management and database requirements (i.e., access
control, integrity, versioning, baselines, etc.) relevant to -
CM.

17. How does one maintain consistency between a central CM
library and working software development libraries?

18. A CM database model, encompassing both developer needs and S

maintainer needs, must be specified.

19. A model for a standard CM database interface specification
for an APSE must include entities, attribute, and
relationships relevant to CMI. (A proposed model discussed at
length was the entity-relationship database model.) 0

20. A CM database in an APSE must be extensible (i.e., ability to
add new functionality) and modifiable (i.e., ability to
change functionality already present).

21. Automated CM software tools must be transportable between
APSEs, and CM databases must be interoperable between APSEs.

22. Natural languages must be employed as much as possible in the

3S-31

1-.. . .
.......... o



WORKSHOP AND FULL SESSION REPORTS Page C-12

"user" interface for automated CM software tools.

23. An automated CM software tool must have a well defined
function that addresses a large class of CM applications.

24. Automated CM software tools for status accounting, query
language interfaces, report generation, control, costing,
configuration identification, naming conventions, test data
generation (including testable object generation), etc. must
be developed for the APSE.

3S3

3S-3



Page D-1...

APPENDIX D

Configuration Management Overview

3S-3S



Configuration Management Overview Page D-2

I.

ii

confi gurati on Management

An Overview

Prepared for

Ada Configuration Management Workshop
7-8 June 1983

San Diego, California

Defense Systems Group
San Diego California

3S-34



Configuration Management Overview Page D-3

Although configuration management is an esoteric term, its
concepts and practices are universally applied by industry to deliver
a product that meets customer requirements. Of course, the degree and
consistency of application vary widely, depending on the complexity

* and use of the product. For sophisticated products built to stringent
standards such as those imposed by the government for aerospace and
military systems, the formalized discipline of providing uniform
product descriptions, status records, reports, and change control is
called Configuration Management. The formal implementation of
Configuration Management is a major task involving numerous
specialized concepts, personnel, and procedures.

A clear understanding of the concepts and techniques embodied by
the terms "Configuration Managemento, "controlm, "identification", and
Maccountingo is essential to a successful Configuration Management
program.

Configuration Management is the art of organizing and controlling
planning, design, development, and hardware operations by means of
uniform configuration control, identification, and accounting of a
product. The goal of these objectives, is to assure that the
delivered configuration items meet form, fi t, and functional
requirements. *Configurationa refers to a complete description of the

*physical and functional characteristics of a product; for example,
its shape, size, materials, processes, power consumption, and
performance (measurement range, accuracy, stability, linearity, etc.).

a The term configuration also applies to technical descriptions required
to build, test, operate, and repair a configuration item.

The overall objective of configuration management is to guarantee
* the buyer that a given product is what it was intended to be,

functionally and physically, as defined by contractural drawings and
3 specifications and to identify the configuration to the lowest level

of assembly required to assure repeatable performance, quality, and
reliability in future products of the same type. To satisfy this
objective the following five major goals are commonly an integral part
of the configuration management effort:

a. Definition of all documentations required for product design,
fabrication, and test.

b. Correct and complete descriptions of the approved
* configuration.

(Descritpions included drawings, parts lists, specifications,
test procedures, and operating manuals.)

c. Traceability of the resultant product and its parts to their
descriptions.

d. Accurate and complete identification of each material, part,
subassembly, and assembly that goes into the product. -

e. Accurate and complete pre-eval uati on control and accounting of
* all

changes to product descriptions and to the product itself.

L 3S-35

.... . ... . ............... . . . .



Configuration Management Overview Page D-4

Achievement of the above goals will ensure a successful
configuration management program. The quantity of data that must be
identified, controlled, and accounted for, however, can present a
major challenge to even the most talented administrators and managers.

Configuration Management applies technical and administrative
direction and surveillance to configuration baselines and increased
control as each baseline is established.

Baselining is the application of technical and administrative
direction to designate the documentation which identifies and
establishes the initial configuration identification of a product and
that products configuration at specific times during its life cycle.

The basic techniques, methods, or procedures that enable the
discipline of configuration management to be systematically applied
are configuration identification, configuration control, configuration
verification, configuration accounting and reporting, and
configuration audits and reviews.

Configuration Identification refers to the technial documentation
that identifies and describes the approved product configuration
throughout the design, development, test, and production tasks.

Configuration identification consists of creating and formally -

releasing the complete technical documentation, including --

specifications, drawings, and data lists, which defines the original
approved configuration (baseline) and subsequently defines all
approved changes to the individual configuration items. It shall also
be understood that this involves physical identification of parts,
subassemblies, assemblies, and facilities as specified in drawings and -
specifications. It also involves the identifications of the design
and as-built documents themselves so that they may be readily
associated with the configuration identification they support.
Configuration identification assures that hardware and all supporting
documentation are continually compatible for the life of the
configuration identification. It also applies to the identification
of changes and to product markings. Identification, therefore,
requires systematic control of part, specification, and data list .
numbers as well as the assignment of serial numbers. (Serial numbers
enable identification of individual items that are otherwise
identical).

Configuration control is a continuing function beginning in the
earliest stages of a product and extending over the full service life
of the individual configuration item. It consists of those systematic
procedures by which configuration changes are proposed, evaluated,
coordinated, and either approved for incorporation or disapproved.
Initial plans of configuration control, before buyer acceptance of the
first configuration item, are directed toward control of configuration
as defined in documents, primarily specifications. Following first
configuration item acceptance, configuration control is focused
promarily on incorporation of changes into hardware and software

3S-36



Configuration Management Overview Page D-5 6

documentation occurring as a result of approved specification and
hardware changes.

Configuration Control involves the systematic evaluation,
coordination, and approval or disapproval of proposed changes to the
design and condtructlon of a configuration item where configuration
has been formally approved internally by the company or externally by
the buyer, or both.

Having Identifled the approved product configuration and having
controlled changes to the configuration up through the point of
authorized release, it is then necessary to verify the physical
incorporation of changes. Configuration verification involves
continuous comparisons of the changed hardware or software with the
engineering data/specification that defines its approved .6
configuration. Inherent in this verification process is the discovery
and correction of configuration discrepancies by (a) comparison of the
configuration item to its approved configuration Identification or (b)
approval by the buyer of the configuration item's as built
configuration, using officially prescribed procedures and forms to ..
record the approval. The end product of configuration verification is
a configuration item that is perfectly mated to all supporting
technial documentation, or, failling this, that has all configuration
discrepancies identified and specifically approved by the buyer.

Having accomplished the functions of configuration identification,
control, and verification, we then make the previous tasks meaningful
by the processes of configuration accounting for internal purposes and .
of configuration reporting for external (buyer) purposes.
Configuration accounting is the recording and reporting of
configuration item descriptions and all departures planned or made
from the baseline through the comparison of authorized design data and
the fabricated and tested configuration of the configuration item.
This Involves the creation of documentation, in formats specified by 71..

the contract, which is used internally and then reported to the buyer
to provide him with accurate information on the configuration status
of all configuration items entering his inventory or stock area. This
reporting activity continues during the operational life of the
configuration item, continuously reflecting changes authorized for
factory or field incorporation.

In summary, the configuration status accounting technique -.

establishes records which enable proper logistics suppo.rt to be
established. These records include (a) where a product is located or
installed; (b) the identifications of selected product items by
serial number makeup, and (c) current modification status. The
complexities of the records must be consistent with the configuration
identification and must be established by the buyer on a case-by-casebasis to suit the required level of control and intended use.

Formal configuration reviews and audits are conducted to evaluate
the progress of a configuration item. This process evolves through
its conception, design, development, production, and test. These
reviews and audits ensure that the physical and functional
characteristics of a configuration item match those specified in the

35-37 .

.*. * . -. . . * .-. ".- . . . . . . . . . .

~~~~.. ,.°..... . . . . . . . . ........ . . ......... .... ...--.-


Configuration Management Overview Page D-6

products specification. The reviews and audits to be conducted are as
follows:

a. System Requirements Review

b. System Design Review

c. Preliminary Design Review

d. Critical Design Review

e. Functional Configuration Audit

f. Physical Configuration Audit

g. Formal Qualification Review

As in any field of administration and management, certain
characteristics or qualities are particularly important to successfule
configuration management. The key feature that characterize
successfui configuration control, identification, and accounting are
as follows:

a. Early and complete definition of configuration management,
goals,

scope, and procedures.

b. Speed in evaluating and processing changes.

c. Accurate Identification and accounting of change.

d. Complete description of changes.-

e. Close coordination among key elements of the project team.

f. Cooperative and responsive buyer.

g. Minimum labor requirements.

Two additional features are: (a) development of the simplest
configuration control, identification, and accounting approach or
system that will provide the desired results and (b) minimum number of
forms and related documents for Implementing changes and for providing _
complete records of all changes.

3S-38

* PROPOSED CHARTER

m 0

Ada RUN-TIME ENVIRONMENT WORKING GROUP (ARTEWG)

To establish conventions, guidelines, and performance -

criteria for the Ada Run-Time Environment that will

facilitate the transportability of Ada application programs

for production (embedded) systems.
V 0

ARTEWG AREAS OF INVESTIGATION

o Elaboration of RTE dependencies for Appendix F of LRM;

o Identification of other implementation dependencies

m (i.e., implementation required functions) inherent in

RTE;

0 Delineation of RTE characteristics to specify manner in

which dependencies may be satisfied; and .

o Investigation of interface requirements for expressing -

characteristics of RTE in source text of application .

programs and the code that implements the RTE. ..

3T- 1

. . -.. -. -

-. -- ,--- -. - p .. S

- ,

IGENERAL COMENTS FROM ADA-EUROPE AIE REVIEW

In April I sent you a contribution to the AIE review from the Ada- S
Europe Environment Working Group. Subsequently, we received two of
the remaining B5 documents, PIF and DBUG, and reviewed these at our
meeting on M~y 26th. At that meeting Knut Ripken reported on a trip
to the USA. The impression he had gained, to quote the minutes, was
that OAJPO want to accelerate ALS, slow down on AIE, and concentrate

m standardisation on ALSO. Again to quote the minutes, "There was a S
general (technical) horror at the prospect of ALS as a standard. It
was felt that in making detailed criticisms of AIE we had omitted to
praise the overall design sufficiently". Most members had been
involved in reviewing ALS previously so were aware of the differences.
We would regret any slowing of the AIE design, as it incorporates some
advanced concepts which would be well worth trying out.

3u -

* S/

I -o-U -1.%.

". " . -- ". ' -

ISPECIFICATION TITLE: SYSTEM SPECIFICATION
ISPECIFICATION DATE: 12 NOVEMBER 1982
I SPECIFICATION NUMBER: IR-676-2
IREVIEW DATE: 15 APRIL 1983

Paragrai Page Competence Level
0.0 1

It is regrettable that the AIE contains no proposals for tools to aid
systematic testing of programs. Debugging is not testing and may be
considered a less important part of software development.

It would be useful to be able to call MAPSE tools during a debugging
session in the same way as this is permitted within an editing
session. The current proposal of providing only a limited set of
commands is a weak special case of this proposal.

The specification contains many new terms unfamiliar to most readers.
It is suggested that the specification could be improved with the
addition of a glossary.

It is our opinion that while the overall design may be technically
adequate, the AIE still ignores the needs of the embedded computer
applications. There is no AIE tools (i.e., compiler, linker,
assembler, debuffer, etc.) that supports an Ada Capability on any
embedded computers such as the MIL-STD- 1750A or MIL-STD- 1862. Until
the AIE effort addresses this problem the AIE will never be an
important Ada tool for real-time embedded computer applications.

B

Where are the contractual statement of work? Where is the users
manual? Without these documents, it is difficult for the reviewer to
know whether the type A specification responds to the customer's
needs.

0 A

I feel that the overall requirements of the AIE are well thought out
except I believe the space permitted the compiler in the minimum
configuration is excessive and will eliminate several otherwise
suitable hosts. The Intermetrics proposed design is equally as
thorough and ignoring performance considerations, should provide a
comprehensive, modern system. There are insufficient details at this
time to determine whether the system will be efficient of resources
and unfortunately this will have as much to do with system acceptance
as reliability and comprehensiveness.

2.1 3 B

The reference to the manual for Ada should be changed to reflect the
January 1983 date for ANSI Ada.

3U- 2

3.1.1 5-7 A 6

The reasons for communications between different KAPSEs, each of which
can serve a number of users, should be given.

3.1.1.1 5 B

The 7 major subsystems in this subsection appear to be significantly
smaller in scope than those requested by the original phase I
statement of wvrk for the AE.

* 0

3.1.1.3 6 B

Is the recompilation that is referenced in this section done
automatically or does the user have any control of it.

3.1.1.5 6 B

This paragraph should state whether or not there is a full screen
option for the editor.

3.1.1.6 7 B

Simulation/emulation implies that the AIE will support target
computers other than the hosts. Would it be appropriate to list
potential targets in the System Specification? A.

3.1.1.7 7 B

The subsystem in this section is not clearly explained. I don't know
[] why it is needed or what it supports.

3.1.5.1 8

Is it a wise design decision to give each program its ow run- time
system? Won't this have a deleterious effect on overhead? Is there code
that could be shared?

12

The paragraph states that the "KAPSE itself is an Ada program, using a
specialized version of the Ada run time system ... Other than the
brief note about this specialized version that appears here in the
System Specification, there does not seem to be any explanation of the
functions performed by the KAPSE's RTS. In the KAPSE B-5, the RTS
that is specified seems to be the one used by all other Ada programs.

8 B

This paragraph states that all embedded machine code will be contained

3U -3

...

- - -. o.

in the KAPSE. Will the facilities for generating machine code be made -"

available to MAPSE users for future applications requiring machine
code generation?

3.1.5.1.1 12 B

The second paragraph is confusing. It is not clear whether the users
interface is to the KAPSE or to the vm/sp.

3.1.5.1.2 13

This seems to be a better architecture than the 4341. There is only
one KAPSE.

3.1.5.2 13 B

A reference to Figure 6 would be most helpful.

3.1.5.6.1 12

The architecture chosen may caused response time problems. Giving

each user a separate KAPSE on a separate virtual machine appears to be
two levels of operating system overhead.

3.1.6 14 B

Is this list of GFE to be construed as a minimal set of hardware for
running the AIE If not, what is the minimum Also, what is the minimum
Perkin-Elmer configuration?

14 B

Thy is there no description for the Perkins Elmer 8/32 configuration?

3.2.1 (2) 15

Embedded computers are alluded to but not specified. This is really .
part of a general comment - it is understood that the AIE will,
someday, be used to develop operational Ada Software for embedded
computers. However, other than indirect references such as this there
is very little in the way of concrete support for targets other than
the host. -

15

Is debugging strictly limited to Ada statements and symbols? Will there
be means to look at objects in internal (hex or binary) format?

14B

7b someone who is not familiar with the IBM systems the change in

3U- 4

•- . .-v - :- . - -. -.. - ., - - -.- - - - .-"•.- " -. .: .. -.' .. .-,. i ' '_ - "

[terms that are used to refer to the IBM host configuration is very
confusing. This section contains an example of this problem. The
term CP-370/VM is unknown to the author. How is this related to
previous references to VM/SP?

i # 3.2.1.1 16

The speed criterion is based on one compile and three users doing
. interactive editing or debugging. This is a light load and does not

show when the system becomes more heavily loaded. There should be a
set of time specification for 2..MAX USERS doing simultaneous
compilatiose.

16 A

It is not clear which of the size characteristics are inclusive and
which are additive. It appears that summing sizes 1,2,4,5, and 6
indicates that to perform a compilation may actually require 848KB. I
sure hope that I am wrong.

" # 3.2.1.3 (8) 19

Reliability is specified in general terms only. Is it possible to be .
more specific?

19

The goal "Max imumn use of reusable portions" is not fulfilled when
there is a separate KAPSE for each user.

19 B

The second paragraph on applicability states that the AliE should be
applicable to the development of embedded computer software for DoD
projects. I see nothing in this type "A" specification that addresses
this point!

In Paragraph Five the word "lightly" should be replaced with
"loosely".

3.2.9 21 B

- Does the third sentence of this paragraph imply that the AIE will S
never be transported to anything but 32-bit architecture main frames?

3.3 22 B

Will this document (CPDP), or some reasonable subset of it be made
available to the AIE reviewers From the context in which it is
referenced, and other contexts, it may have technical information of
interest to the reviewers.

3U-5

•. i uhhk .i i.h.imb pbb~p~a~~iimanrpbi Ta.- .

..

f 3.3.5.9 22 B

I thought the interface to the back end was the intermediate language
BILL.

3.7.1 26 B

The first paragraph seems to summarize the function of the KAPSE. It
only talks about the functions regarding the database. Why aren't
other functions summarized in this paragraph? The nomenclature
KAPSE/database is used quite often throughout this specification.
Why? The term KAPSE Implies that it has a database. The term appears
to be redundant.

3.7.3 (5) 31

What specifically is a "near-executable memory imagem? Is it non-
executable only because it has not been loaded into virtual memory or
is there further processing required, beyond that of loading it?

28

Is a stub just a return or is it a message plus a return This should
be specified. A message plus a return is, of course, more meaningful
and useful.

31

Is the PIF also the back end of the compiler? It also accepts Diana and
produces executable code!

28 B -

Is the recompilation that is referenced in the paragraph marked 1 done
automatically or is it user initiated?

3.7.4 (2) 31

It should read "dividing the total number of statements by CPU time"

31 B

In the paragraph marked 3 it refers to the DIANA intermediate
language. Instead of DIANA a better choice would be the term IDL.
DIANA is defined using IDL.

3.7.5 33

Couldn't there be both a line and a screen mode? IBM does offer a
screen editor with the 4341 (IBM XEDIT).

3U - 6

33 B

Will the output data from the tools invoked within the editor be
• displayed or will they be appended and inserted into the files that

are being edited?

I think you really want to refer to this tool as an editor tool and
not as the edited tool.

3.7.6 33

There should be a facility to display internal format (for example, a
*I dump option).

3.7.7 35

A number wuld give a lot more meaning (and testability) than general
statements like "far in excess".

3.7.8 35

Are the "secondary MAPSE tools" part of the deliverable AIE?

35

What specifically is an "object module converterw?

I B

Why isn't the bootstrap compiler a deliverable item? Such a tool
wuld be useful in the interim before the full Ada compiler would be
delivered. Are the other tools that are referred to in the Paragraph

S two deliverable?

3.8 35 B

Is this section responding to a contractual requirement? Without a
statement of work it is hard for this reviewer to determine just how
well this section responds to customer's needs.

4.1.1.2 39 B

Does this section imply that only 100% compliance to the ACVC tests is
acceptable to the customer? Is less than 100% compliance acceptable
to the customer?

FIGURE 1 9 B

The figure doesn't seem to correspond with some of the interfaces that
* were described for the KAPSE overview. It would appear that there
*: should be a bi- directional line going from the box marked "Users and

Peripherals" to the box marked "Host Machine Plus Necessary Software".

3U-- 7

There also appears to be a bi- directional line that needs to go from
the box "terminal IO" to the box marked "host 100. Furthermore there
are some minor errors or corrections that should be made. I/F in the
Tools" Comunications" box needs to be defined. Also the box marked
"Database" should be defined as the MAPSE.

FIGURE 2 10 B

The box marked "Prog Int Fac" should read "Program Initiate Facility".

FIGURE 3 11 B

The figure is not clear. It has no explanations of the symbols. It
takes careful examination to determine that an oval is a data base
object and a rectangle is a tool. What does a dotted line mean? Some
dotted lines go off into space.

11 B

It is not clear how the boxes marked "Compiler","Linker", and "Program
Library Manager/VMM" fit into the context of the diagram. It is
suggested that somehow these boxes be marked as running Ada programs.

FIGURE 9 32

There should be separate back ends for producing enulated target code
and actual target code.

3U-

..-.... "

.

.

- I -" ' "- ." -**1 1 "* *-.-.---.--- - " --- - - - " ;• .-

ISPSCIFICATION TITLE: ADA CCMPILER PHASES
ISPECIFICATICN DATE: 82 NOV 5
!SPECIFICATICN NUMBER: IR-277-2
REVIEW DATE: 83 MAY 1 - -

0

Paragraph Page Competence Level
0.0 .A

The specification introduces many new terms unfamiliar to the
reviewer. These include terms such as "library modes" in section
3.2.4.2 and "domain" and "sub-domain" in sections 3.2.4.4.2. It would
be most useful if this specification had a glossary that defined all
new terms introduced in this specification.

A

Without a statement of work to reference it is impossible to offer any
comments on how compliant the specification is to the statement of
work.

2.1 5 A

Change the reference for the reference manual for Ada from July 1982
to January 1983 to reflect the new ANSI Standard.

3.2.4.4 10 A

It is unclear to this reviewer what purpose the virtual memory
methodology interface serves. There is just enough detail in this
section describing the virtual memory methodology to confuse the
reviewer.

3.2.4.6 12 A

The default value for NOCODE should be zero. Fifty is a reasonable ""
value for NOSE7', but code should never be produced for invalid 0
programs unless specifically requested. Also the value n should apply
to the sum of syntactic and semantic errors.

Incidentally, I assume that the compiler will never insert code into
the program library after a FATAL or INTERNAL error, but will always
generate code no matter how many WARNINGs or NOTEs were generated.

12 A

The LIST default should be CN. There are too many UNIX alumni on this
project. Seriously, novice users may never discover why their 0

programs fail so badly that they never even get a listing, but expert
users will normally use scripts or abbreviations.

3U-9

S* **.". -",.."
,- G • o ~~~~~~~~~..... -.-. . . . •. ""'

11 A

In paragraph 4 of this section it states that if the library parameter
is amitted the compile request is interpreted as a request for a
syntax check with no semantic processing. This seems like a rather
awkward way of specifying this request. A more straightforward way
would be to have an option that states specifically that the user
wants a syntax check only. Furthermore as this paragraph is currently
stated it prevents the definition of a default program library which
would be very useful to most users of the AIE.

The discussion in this section regarding the LIST options is
confusing. in particular the interaction among the options ON/OFF
SOURCE/NO SOURCE. %hat happens when the user specifies that listing
is to be ON and there is NOSOURCE?

In the paragraph that describes the DEBfLX option will the ALTER and
BREAK directives 7-event the comupiler from performing code movement
and dead elimination> .

In the paragraph describing the REORDER option it is not clear why the
compiler needs to reorder the compilation of units?

11 A

The effect of compiling a program with no library specified should be
to perform syntactic and semantic checking using only those library
units which are specified in the LRI4. Since a compilation can contain
many compilation units this type of checking can be used for final
check-out of systems before shipment to insure that all necessary

j source is included. (And in the proper order.)-

3.2.4.9 13 A

It is not clear why the compiler -Wuld be invoked by the program
library interface to assist in updating the library.

3.2.5.3 20 A

- This section states that several of the back end phases perform
machine independent optimizations based on machine independent cost --

-criteria or cost functions. %here are these functions defined? Whiat
* factors are used in calculating these cost figures?

*3.3.1.2.2 24 A

- Subsection A describes new attributes that are added to the abstract
*syntax tree. Vby aren't the attributes for the partial symbol table

and the name table described in this subsection? Both of these
* structures are produced by the first phase of the front end.

* Subsection D of this section describes a list of pre-semantic checks
that are performed. It is stated that none of these checks require

* access to symbtol information, i.e. the symbol table. How then can
semantic dueck 3 for analyzing private or incomplete typed
declarations be performed without access to a symbol table?

3U -10

3.3.1.2.4 29 A

This section describes several alternatives to the problem of creating
two different trees in the front end. One tree is the Abstract Syntax
Tree; the other is the DIANA tree. Which of these alternatives has
been chosen? How do each one of these alternatives affect the
rehosting of the front end? .I..-

3.3.1.3.2 42 A

Where is Subsection D?

37 A

How is the symbol table related to the list of IDL ITEM'S in the DIANA
tree? Is there one entry in the symbol table for each ITEM or ID
defined (in the items of the DIANA tree)? Is the symbol table a
completely unique and separate DIANA data structure or is it dispersed
and distributed among the ITEM4S nodes that are found in the DIANA
tree?

3.3.1.3.2.1.2.1 49 A

In the second paragraph, third sentence, scratch the phrase "as these
phases determine the feasibility of code sharing". It is repeatedB twice.

3.3.2.1 49 A

This section states," that the phase GENINST determines if
instantiations can share generic implementations that have been
generated for a previous instantiation of a given generic". The
specification states that in general the previous phase SEN is unable
to determine that multiple instantiations can be shared, because it's
unaware of the run time representation of the data types. It is not
clear to the reviewer what knowledge has been obtained between the
phases SEN and GENINST that enables the phase GENINST to work?

3.3.2.1.1 50 A

How can the phase GENINST add information to the DIANA tree about
instantiations yet preserve the original DIMN tree?

3.3.2.2.2.6 53 A

The phase STATINFO produces sane very useful attributes only when the
option LIST)GREF is given. 7hese attributes that information, such
as, all references to defined ids, a list of calls made within a
procedure and a list of all external references. Why wouldn't this
phase produce these attributes anyway since It appears that they are
most useful for later phases of the middle and back end of the
compiler? 3U- 11

3.3.2.3.2.1 57 A

Are the descriptors described in this section a compile time or run

time data structure?

3.3.2.3.2.1.1.2 59 A

What is a 'ground type* that is referenced in the last sentence of
this section?

The second paragraph states that run time data structures that compute
the attributes IMAGE, VALUE VAL POS, SUCC and PRED for enumeration
types when those types are given in a representation clause. They are
also needed when the type is used in 10 or when objects of those types
are used in connection with the image or value attribute.

3.3.2.3.2.2 62 A

Why are the data objects of packages, subprograms, etc. determined so
early in the compilation process? Why isn't this layout done later ---

after live/dead object lifetime analysis is performed? Laying out the
objects for subprograms and packages before the live dead object
lifetime analysis deprives the compiler of the opportunity to overlay
objects with disjoint lifetimes. The live dead object lifetime
analysis that is done later In the back end by the phase 'ThBIND will
only optimize the temporary locations not the other objects within the
sub- program or packages. -

3.3.2.3.2.2.2.2 64&65 A

This section states that the storage associated with sub program frame
is divided between the primary stack to hold static size data and
secondary stack to hold dynamically sized data. How well will this
design feature transfer to other target architectures besides the IBM
360/370?

3.3.2.3.2.2.3 65 A

What is a "region of the array" that's referenced in the last sentence
of this section?

3.3.2.3.2.2.5 66 A

The last sentence of this section is confusing. It should read "in
processing a generic instantiation, STOWAE need only Instantiate a
copy of the prototype from the table that parameterizes any shared
code body used by that instance." %hat is this table that is
referenced in this sentence? Is it the list which the phase GENINST
generates for each generic template (see section 3.3.2.1.2)?

3.3.2.3.4 .- 6 A

3U -12

How was the 15% figure referenced in the last sentence determined?

3.3.2.4.2.6 72 A

In this section it states that storage for resources declared in a
package are found in the frame for the enclosing unit. If the package
is a library unit, what then is the enclosing unit for those library

* packages?

3.3.2.4.2.7 72 A

The last sentence of this section implies that whenever an object is
renamed the address for that renamed entity is always stored in a

* separate address location. My is that necessary if the address of
the object is always static? Mty not replace the name of the rer~med
entity wherever the new name appears in the code.

3.3.3.3.2 85 A

The subsection A on live dead analysis does not include any discussion
of exception handlers. Duie to the spurious nature of exceptions any
object that is referenced within an exception handler should never be
put into a temporary such as a register or spill area.

APPEN~DIX A.3 104 A

BReplace all uses of the word BAD with INVALID. The use of words such
as BAD, ABORTED, and FATAL should be avoided in error messages if you-
intend to interface with people. The use of BAD is the only such.
mistake here. (Assumning that only the developers ever see FATAL
errors. The compiler should not be released if it still contains such -

errors reachable under normal circumnstances. Of course, if a disk or
U memory board fails, some swearing by the compiler can be tolerated.) S

3U - 13

..

ISPECIFICATION TITLE: AIE: COMPILER PHASES B5-AIE(1)-CCMP(1)
I SPECIFICATICN DATE: 5 NOVEMBER 1982
ISPECIFICATION NUMBER: IR-677-2
IREVIEW DATE: MARCH 1983

Paragraph Page Competence Level
0.0 0 A

more information is required regarding the built-in maintenance
facilities of the compiler to determine both its maintainability and
its adaptability to new host and/or targets.

3.2.4.6 11

A general concern, which does not appear to be addressed in the
compiler B-5 specification (but which may be answered when the PIF B-5
becomes available) should be raised now.

The issue relates to the inclusion of actual instantiated code being
included in the source listing fzom a compile. In other words, when a
generic unit is instantiated in a tMAPSE users program, will he see the
actual code he created in his listing, at the point at which he caused
the instantiation to happen. The answer does not seem to be in this
document.

For the sake of both testing and maintaining a program, it is most
desirable to have this capability. It appears that something like .
this may be recreated, after the fact, by a tool called the source
code reconstructor, also contained in the PIF. However, this may, or
may not, be adequate from a maintainers viewpoint.

11 A

Permitting the source to come from the standard input file supports a
* mode of compiler execution wherein a large program, i.e., the Ada

compiler will be paged in and out at user input speed. This is an
inefficient use of computer resources.

12 A

The most difficult bugs occur-not during-program check out but during
production use when a large volume of data is available to create the
combinations and circumstances that expose boundary conditions and
interrelationships that all too often do not exist in test cases and
validation suites. To require hooks and suppressed optimization to
permit effective debugging indicates an ignorance of the requirements

-•of the embedded computer application area.
•-U

13 A

The rationale for source reconstruction from DIANA escapes me. %bat's
wrong with the original source. Descriptors which correlate the DIANA

3 U- 14

.- ..

with the contributing source files seem sufficient. 'lb include source
into this already space-consuming data base aggravates a problem that
won't be fully appreciated until the first large system uses this
compiler.

13 A

Finer control of optimization than simply to favor time, favor space,
or none on a program wide basis is desirable. Certain types of
optimizations, particularly those related to loops, can have 'very
different effects depending upon loop frequency and content. Regional
control and pragmas which provide additional program information such

- as loop frequency or the expected ratios for if and case statement
paths can provide significant program improvements with little impact

- upon compiler implementation costs or compilation performance.

14 A

Cost-effective compiler check-out and maintenance requires more
* control of the compiler's internal maintenance facilities (which I

hope is more than just TRACE) than on and off.

3.3.1.2.4 29 A

* This requirement for compiler-produced external AST and DIANA files is
controlling compiler design and performance. It would seem that if
the compiler developers need a more efficient representation than tool
programs could use one also.

3.3.1.3.4 49

- The paragraph states that it may be necessary to place some limit on
the size of a separate compilation unit in order to attain a compiler

*speed objective. This is acceptable, if this (unknown) limit is used
* only as a number in the acceptance testing. It will NOT be acceptable

if some arbitrary unit size is wired into the compiler, and serves as
* a constraint on future applications developers.

4 # 3.3.2.3 55

* The entire section on STORAGE does not address the handling of
representation specifications, which should be a major special

* requirement. The fact that this topic is omitted may be confirmed by
referencing Appendix A, p103. This appendix lists the compiler error
messages. It will be noted that the appendix states that STORAGE will

-. generate an error message for bad representation specifications.
Since the specification on STORAE does not appear to mention
representation specifications, it seem as if there is an
inconsistency in this B-5, and the document is incomplete in this
area.S

3.3.2.3.1.1.4 59

The specification states "all fixed point types are a single word

1.3U-15

- ~ , - ;.. - -]

long. Tis is not a good ground rule, if one considers"- --:

transportability, especially from the viewpoint of real targets. As
long as this compiler generates code for the IBM and P-E targets, with
their 32 bit words, this is likely to be a safe implementation.oHowever, in the embedded world, there are targets with 16 bit words,
and there is very definitely a requirement for extended precision
fixed point arithmetic. This restriction is not one that could be
lived with, when military targets are considered.

- # 3.3.2.4.4 72

The timing requirement stated in this paragraph is hedged with the -
statement about the tree part of DIANA not being paged. This
restriction may make the whole speed issue somewhat less meaningful.
It also gives rise to another issue - the paging facilities of VM4M.
In section 3.3.1.1.2, VMM is presented as a useful device that
isolates the detailed bookkeeping of paging from the actual MPPSE
tool. However, in many of the special requirements section, such as
3.3.2.2.4 (p 55), the speed requirement is hedged with a statement
that paging, if it occurs, will cause problems in terms of meeting the
speed objective. It appears the VMM system has to be overridden in
certain cases, or workarounds established. These tend to cast some
credibility on the overall usefulness of the W44.

3.3.3.1.2 (D) 77

It would not be proper to replace an expression A*0 by 1.

77

Applying strength reduction to floating variables is not generally
safe, as roundoff errors in a series of additions tend to accumulate.
As a drastic example, consider:

lambda:=.0; -
while lambda +1.0/=1.0
loop

lambda :=lambda/2.0;
end loop;

- make lambda smallest negative power
- of two such that l.0+lambda=l.0

:.. ~x:,, .O; -

count :-0;
Z:=n1. +4.0*lambda;
loop

count:wcount+l;
x-x+l.0;
y:l.0+x*lambda;
exit when y>z;

end loop;
put (count);

3U-16

,.. - - --..-.. ,.,.-...-.-.--..-..- .-.-........-.....-.-....-..

count: -;
x prime:=1.0;

-remove loop invariant 1.0 from y,.
-and add initial value 0.0*lambda

loop
count:icount+l;
xyrime :x_prime+lambda;
exit when x_prime>z;

end loop;
put (count);

The second loop involving count is derived form the first by strength
reduction,constant folding, code motion and dead variable elimination
in a straight-forward way. However, it will never terminate (unlike
the first) since the statement "xprime:--x yrime+lambda" will actually
leave x prime unchanged from its initial value of 1.0. It is in no
reasonable manner equivalent to the first loop. Strength reduction on

*. floating point variables can sometimes be numerically justified, but
we should rely on programmers to write the code that way if desired,
since the automatic transformation is not safe. It is, however, quite
justified over integer variables, and is quite effective in
simplifying subscription expressions.

77 A

I assume that the algebraic simplification is either A**0 or the -

replacement is 0 rather than 1.

3.3.3.5.3 94 A

What is the hook table? Neither the compiler specification nor the
* debugger specification clearly describes what it is or how it differs

from the statement table.

3.5 96 A

It is not clear whether the KAPSE size is included in the 300KB. If
not this minimum size is most certainly too large. It is undesirably
too large in any case to maximize the number of potential hosts.

98 A

Although 2000 lines should be ample for most programs giving current
* programming conventions, this is too small as an absolute limit for a

compilation unit particularly since this includes packages.

97 A

Given the intended application environment of Ada, it would seem that
code efficiency should precede retargetability/rehostablility as a
priority. This is particularly true with the current philosophy of

3U - 17

utilizing standard instruction set architectures.

3U - 18

!SPECIFICATION TITLE: KAPSE/DATABASE
ISPECIFICATION DATE: 82 NOV 12
! SPECIFICATION NUMBER: IR-278-2
!REVIW DATE: 83 MAY 1

Paragraph Page Competence Level
0. GENERAL B

It should be noted that I did not undertake a detailed analysis of the

security properties of the database system described in this
S specification. My gut feel is that there are no obvious "holes". I 0

would hope a more detailed analysis of the security properties of the
design (given more extensive design information) would be conducted.

3.2.2 10 B

The design goal to provide support for thirty 300 baud input streams
is too low if the corresponding number of 1200 baud streams is 7.5 or
9600 baud streams is one. User access to the AIE is more likely to be
at a rate greater than 300 baud than not.

3.2.4.1 11 B

The organization of the interfaces here is in some ways questionable.
In particular, it would seem ill advised to include the mail system
with the program invocation facilities; obviously the later is
mandatory and fundamental to the entire APSE, the former is not.

3.2.4.2.1 12 B

It is stated that each component of the tools composite object is an
* executable context. Where do the source, documentation, etc. for - -

these executable contexts reside?

* - Does this section prohibit an AIE installation from having more than
-" four components in its root object?

12 B

It is not clear from the description given in this section whether the
" conve tions indicated are recommended or mandatory. The very fact

that some conventions are mentioned opens the possibility that some
components of the KAPSE may come (either now or in the future) to -

- depend on these conventions.

The conventions stated are not specified in sufficient detail to form
* a complete set of practices for structuring the database. A more ..-
1. elaborated set, for example those associated with the Multics.system..

should be presented if any conventions are presemted-a-a isl. -0-

- 12 B

3U -19

.......

The notation used in the last paragraph on the page is not previously
explained; a forward pointer is needed.

3.2.4.3.1 14 B

The access method is implied to be permanently associated with an
object. Is it in fact true that a single object may, over it's
lifetime, be accessed by only one access method? If so, this may be
overly restrictive; certainly "escape" into some access method that is
simply a byte stream may be necessary. If not, then restrictions on
using different access methods at different points in time is not
explained.

14-15 B

As written, this section is more complex than necessary. A top down
description that starts with a discussion of extended objects might be
an improvement.

This concept of *extended window object" is discussed without
describing a window object which is not extended.

3.2.4.3.2 16 B

The possibility of attribute values being files or windows in not
explained. I cannot find a single explanation of this option in the
remainder of the document. It is an interesting, and potentially
useful, feature - it should be treated completely.

3.2.4.3.3.1 20 B

The notation "PRIORITY" is used before it is explained; a forward
pointer is needed. -7

3.2.4.3.3.2 24 B

How does the syntax for a pathname which is expressed relative to the
root differ from the syntax of a pathname which is expressed relative -

to a local window?

How does the pathname SYSTEM.PRINT'QUEUE'FIRST.BODY differ from
SYSTEM. MINT. QUEUE.FIRST. BO .Y

3.2.4.3.4.2 22 B

The explanation of CATEGORY and CATEGOY DESCRIPTOR is particularly
unclear. It is not evident why botH are needed. Apparently the
CATEGORY takes on values that are ASCII strings, and hence it is not a
descriptor of the actual contents - which is the purpose of the
CATEORY DESCRIPTOR.

I attempted to examine the entire specification quite throughly to
resolve this matter. Unfortunately, without a comprehensive index,

3U - 20 S

. . * .. * . **.*% *.* ..

-~.- .*-.- ,~* .-- ** * .o...

* the attempt was frustrated.

3.2.4.3.4.4.1 24 B

The note on the bottom of the page needs elaboration. I suspect it
conveys important ifrmain, which I could not fully understand.
Examinations of the remainder of the specification did serve to clear '

up this matter.

3.2.4.3.5.3 26 B

The facilities described in this paragraph are particularly valuable; -

their inclusion is to be commnended.0

3.2.4.3.6.5 31 B

The set of role modifiers specified in this paragraph appears to be
sufficient, and complete from a practical viewpoint. I question the
validity of both of these statements in as much as I did not undertake
a detailed analysis of the role facilities of the KAPSE.

3.2.4.3.8.2 33 B

* The periodic "garbage collection" of window keys will have some
performance impact on the KAPSE as a whole. The extent of this
performance impact is not apparent, although it may be significant.

3.2.4.3.9 36 B 7. :
It is not clear whether proper consideration has been given to

* recreating an object from the "script". In particular, if the program
that effected the state transformation in fact invoked other programs,

* then the closure of all input to all programs so invoked must be
recorded. It is not clear whether the KAPSE will have provisions for
detecting such occurrences, and recording appropriate information in

* those cases. In theory, it would be trivially possible to write
programs whose operations could not be repeated - for example a
program whose function depends upon the date. In practice such
programs may not be encountered, but there are a wealth of
difficulties that may be.

3.2.4.4 37B

I most strongly object to the organization of the J(APSE that results
in host dependent details being "hidden" within the SIMPCC)IP
component. A separate component should be defined that contains all
host dependencies that are associated with both terminal and mass
storage i/o devices.

3.2.4.4.1.1 39 B

* The inter machine (i.e. KAPSE) commnunications seems to be largely TBD
throughout. This is an issue which should not be treated lightly. it

3U - 21

... : . : .

may turn out that it is desirable, for a number of reasons, to run
multiple AIEs on the same physical machine. At present, it would seem
debatable whether adequate facilities will be provided in the AIE to
allow this.

3.2.5 41 B

During the first reading I was absolutely shocked when I began this
section. In section 3.2.4.3 I had discovered a great wealth of
information about the structure of the database; with the overwhelming
flavor being high level facilities to be provided. In the beginning
of this section the mention of block i/o routines took me quite by : -
surprise.

The figure 3-8 (pg 42), for example, does not indicate what other
components of the KPSE the SIMPCCMP CPC interfaces with. Comparing
this with figure 3-1 does not resolve the difficulty. In fact, it
would lead one to believe that SIMPCOMP is partially in the database
portion of figure 3-1, and partially in the KAPSE/Host portion of
figure 3-1. Such a conclusion immediately leads one to question the
portability of the entire AIE (and the KAPSE in particular) in as
much as host dependencies may be spread throughout the KAPSE.

3.2.5.1 43 B -

I would strongly recommend that the device io and block io components
of the SIMPCCMP CPC be removed and placed in a separate CPC that is
identified as host dependent. The remainder of the SIMPCCMP
components should then be host independent.

3.2.5.3 46 B

The same blurring of levels of abstraction seems to occur in the
architecture of the MULTPROG CPCI. Clearly, mail terminal screen
management, and program loading are very different kinds of
facilities. I very much dislike a packaging or design that mixes
applies, oranges, and elephants. This is what has happened here; at
least to some extent. The mail and terminal management should be in a
separate CPCI.

3.2.5.3.4 47 B

Note that KAPSE-KAPSE communications is here completely TBDI That is
clearly unacceptable.

3.3.1.1.2.3 52 B

The parameters of the buffer management algorithm(s) that may be tuned
should be specified.

3.3.1.1.4 53 B

7he "virtual copy" facility seems both well justified and well thought
out; it may prove essential to obtaining acceptable performance in the

3U- 22

.-,- . -.- . - - - .-AMA --

AIE.

3.3.1.3.1 61 B

The provision for data clumps would likewise seem both necessary and
well conceived.

3.3.1.3.2 63 B

More details regarding the various access methods is necessary in
order to fully evaluate the functionality to be present in the AIE.
In general, the access methods provided appear quite reasonable. I
question in particular, the results (or possibility) of applying
various access methods to the same object; the information provided
leaves that an open question.

3.3.1.4 67 B

The specification of the operations in the package DIRZr ACCESS need
to be elaborated. The information provided seems to not tie together
all the concepts, etc. introduced in 3.2 to the degree I would
prefer; much of the "tying together" is left to the reader.

3.3.1.5 76 B

Same remark as on section 3.3.1.4. Here the situation is even more
extreme.

3.3.2 79 B

This section is much more complete than sections 3.3.1.4 or 3.3.1.5,
although still not "perfect". JR

3.3.2.1.4 85 B

The window traversal "cache" would seem necessary; inclusion is
certainly well advised until more performance analysis information is
available.

3.3.2.3.2 93 B

Is this the first mention that access control facilities are used to
accomplish synchronization? I believe it is. At any rate, a more
prominent discussion of this matter should appear in section 3.2.

*3.3.3.7 11912 B

The specified mail system is inadequate for general use in at least

the following ways:

o it lacks necessary operations such as delete, reply, forward,...

3U- 23

o there should not be a me-to-me correlation between users and
mailboxes

o it is not clear that the facility allows users to share mailboxes

o the creation of a mailbox should not require intervention by the
system manager

However, the high level tool for manipulation mail belongs In the
*MAPSE rather than the I(APE. The KAPSE need only provide the

facilities needed by the mail system, and it is likely that the
database already does. If this is the case, then this section should

*be deleted.

3.3.5 132 A

There is no global view of the run timue system described in the
specification; that is there is no relationship described between a
main program, its library units, and its subunits. This would be

W ~useful in giving the reader some context to understand where different
portions of the run- time system such as the unit execution support or
the storage management fit.

*# 3.3.5.1.1.2 133 A-

This section fails to describe the generic subprogram parameter
descriptors.

3.3.5.1.1.3 134 A

What is the unit type that is described in the unit data area?

3.3.5.1.1.4 134 A

How are the registers described in this section mapped onto the real
register set for the IBM 370? Are all these registers required at
once or is same subset of them required at all times?

3.3.5.2 132-138 B

The likely effect of the heap protocols is to cause programners to use
representation specifications to specify memory pools for access types
for more often than intended by the Ada language designers. It should
be possible to Implicitly cause the deallocation of memory associated
with an access type on exit of the scope without specifying either a
representation specification or a pragma.

3.3.5.2.2.2 140 A

Forcing data objects to reside completely within a single storage
segment of 4,096 bytes is unjustifiably restrictive. Clearly there
mst be some way to allocate very large data objects on a secondary

* stack. Languages like M1l and Fortran for the BM4360- 370's don't
have these unnecessary restrictions then htby should Ada.

3U -24

3.3.5.2.2.4 143 A

How does storage management keep segments reserved for heaps storage
separate from segments reserved for dynamic storage for subprogramframes?

3.3.5.3.1.5 146 A

Where do the headers for the dependency list described in this section
reside?

3.3.5.3.2.3 158 A

Tasks are not added to the appropriate activation list during task
activation as described in this section. They are added to the
appropriate dependency lists when the task is created.

3.3.5.3.2.5 159 A

The first reference to the term "acceptor" in the third sentence of
the third paragraph of this section should be changed to "caller."

3.3.5.4.1.1 163 A

How do you insure that each 32-bit exception identifier is unique
across cmpilation units?

3.3.5.4.1.3 163 A

The parameter RET is missing fram the list of registers to the
operation PRCALLER.

3.3.5.4.2.5 166 A

How do you know when an exception is propagated out of the main
program?

3.3.5.6.2 170 A

What is the criteria that determines when it is appropriate to insert
inline the code for the type support routines?

3U. - 2

... °%°°

-:-- "-."--2 -7. -.- 7 ---.- -.- -- .7 -' ,.-: : .- ". --5 -- -- - , M' -- ._. - I -- .-e -1 ' C .7 .7 " -' -" ." '-- -- - .. "

ISPECIFICATION TITLE: KAPSE/DATA BASE B5
ISPECIFICATION ITE: 12NOVEMBER 1982
ISPECIFICATION NLIBER: IR-678-2
IREVIBV ITE: 15 APRIL 1983

I4
Paragraph Page Competence Level
0.0 0 A

The KAPSE and database services appear to be complete. The proof of
the viability of the system lies in its performance characteristics
which can not be evaluated at the B5 specification level.

* 3.o 5

This document that not appear to contain any timing or sizing data.
Are there budgets established that the FAPSE will be measured against.

3.1.1 5

In so far as possible" is vague wording. It is a design goal and not
a requirement.

3.1.1.4.1 69

Reading a record takes two operations: SET OFFSET and READ. It would
be more convenient to have a single READ procedure with the record key
as a parameter.

3.2.1 8

This section says that the peripheral suite of the IBM 4341 must be
supported in a host independent manner. This is an extension of the
meaning of "host independent". Must any CPU support 4341 peripherals?

3.2.4.1 11

Every call to the KAPSE is a message to an agent task. This may
degrade response time.

11

The paragraph states that services are provided to an Ada program via
packages linked into the running program.

In what manner will this be accomplished. Will a user program just
receive packages corresponding to those functions his program either
directly or indirectly calls. Or will the user be burdened with the
overhead of an entire KPSE for every running program Or will the
answer lie somewhere in the middle - will a user program have a whole . ..'
CPC linked into it if he uses one of its services.

3U - 26 J

.- . .. -- t*-. '. S -. - - •

11

Is there supposed to be a 1-1 correlation between the packages
delineated in this paragraph and the list of CPCs contained in the
Systems Specification, page 49. Mich list is correct '

3.2.4.3 38

The 24 pages describing the Database-Tool Interface describe an very
complicated system. Other operating systems (IBM OS, (MS, TSO) manage -" --

data in a much simpler and easy-to-understand way. The interface with
Secondary Windows, Role Translations, and Transitory Windows could 0
require as much training as the Ada language itself.

3.2.4.4.1.1 38

The architecture of the IBM 4341 version gives each user a KAPSE
running in a virtual machine. Since the KAPSE run time system is time
sharing (processes and tasks) on top of the VM/SP time sharing of
virtual machines, the response time will be degraded.

3.2.5.3.2 46

Communication from program to KAPSE is by message. It might be better
if it was by calls to system subroutines.

3.2.5.3.5 47 e

The list of control characters is incomplete and does not belong here.
It should be part of the command language.

.0

3.2.5.3.6 47

There should be a way to change a users privilege level without logout
and re- login.

3.3.1 50

The Section on Data Management would be appropriate if it was
implemented on a bare machine. It has all the primitive functions of
a file management system. It appears to be implemented on top of the
VM/SP operating system, which may lead to excessive overhead.

3.3.1.1.1.2 50

"The logically sequential blocks are allocated non-sequentially"-
Does this mean that the blocks are allocated so as to purposely slow
down the system? That is not efficient.

3.3.1.2.1.2 58

3U- 27

- --. ". . . . -"-" .-' " " " .

. - .

This section should be filled in.

3.3.1.4.4.1 72

Procedure NOECHO has a syntax error. The word "procedure" is
repeated. The system would be more user-friendly if SET ECHO and
NO ECHO were one procedure with a Boolean ON-OFF as a parameter.

,3.3.1.4.5 75

This package gives Ada a somewhat awkward FORTRAN style 1-0
capability. There should be a better way to specify formatted I- 0.

3.3.2.3.2 94

The package ACCESS SYNCHRONIZATION provides complex access control but
is not clear on whe-ther it provides file level locking or record level
locking. This should be clarified.

3.3.3.1 97 -

Comment line 11 of the procedure specification of LOAD PROGRAM
contains the statement "extra effort will be made to share Eode..."
Is this to be considered as a requirement

In the same general area, p98, paragraphs 3.3.3.1.3, and 3.3.3.1.4
both contain the statement "when sharing is warranted...", which leads .
one to believe that some tool exists (or will exist to track frequency
of use of KAPSE programs. Is that a reasonable assumption Where will
that tool reside Is It to be contained in the KAPSE or provided by

"- some other CPCI.

* # 3.3.3.3.1.1 105

With regard to package PROGRAM INVOCATION, function CALL PROGRAM, is
the parameter PROGRAM PATH the same thing as the parameter
LOADMODULE NAME that was-seen on page 97 If so, could one of them be
changed to igree with the other

3.3.3.3.2.1 108

In function PICKPARAM, the formal parameter PARAMNAME should be -

specified with a default.

3.3.3.6.1.2 116

The login process should permit the execution of an optionally
suppied, user generated script file. This seems to be implied rather
than actually stated as a requirement.

1 3.3.5.1.1.4 134 A

3U -28

- * . ---....-

- -.. "...

The number of registers used for a call seems excessive. Are all of 0
these dedicated throughout the subprogram body? It would seem that
some of these could be eliminated by having indirect pointers from
canonical locations in the caller's local frame.

3.3.5.1.2.1 135 A

It is often better to perform register saves within the callee in one
place for those registers used, than to perform saves at the point of
each call %hich is being done for the floating registers.

3.5.0 132 A

The run-time conventions appear to be based upon the 4341
characteristics. Potential target computers may not conform nor have
the register resources afforded by this host. I trust that the design
does not preclude adaptation to a wide spectrum of machine
characteristics.

FIGURE 3-2 13

Figure 3-1 is titled on the bottom. Figure 3-2 is titled on the top.
There should bi consistency.

3U -.-

A..

.I -3U -29-

!SPECIFICATION TITLE: AIE: MAPSE COMMAND PROCESSOR B5-AIE(l)-4CP(l)
ISPECIFICATION DATE: 1 DECERBER 1982
I SPECIFICATION NUMBER: IR-679-1
!REVIEW DATE: MARCH 1983

Paragraph Page Competence Level
0.0 C

Access rights were not addressed. I assume the access privileges on
the objects submitted to and created by the MCP will be sufficiently
discussed in the data base manager. - -

C

We should take advantage of the structure of the MCL and provide a
syntax oriented MCP (indenting lines to the proper block structuring
level).

C

I'm not sure if this is the appropriate place for this (maybe within
the terminal driver within the KAPSE). But a good command editing
facility should be provided. e.g. redisplay (and edit) the last
command line entered.

0A -

The overall capability of the MCP looks very comprehensive. one
desirable feature appears to be missing (but may in fact be achievable
by what is supported); this feature would permit the creation of a log
of input commands, resulting output, or both without redirection from
the standard devices. -

#3.0

This "Requirements" section reads much more like a definition of an
implementation of the MCP rather than a requirements or functional

"~ specification. The Appendix A specification of the MCL proper and the -- -
"main" sections must be better integrated and the implementation

-: issues motivated.

: # 3.2.4.3 8 C

- If no general help or no parameter help exists a message stating such
. should be output rather than having the parameter attribute being

undefined.

3.3.0 15- A

I didn't understand the necessity for multiple tasks to process

3U - 30

.

commands; these would seem to result in a non-trivial overhead.

11 .
3.3.1 A

I can see several places where the implicit semicolon rules will cause
trouble. These could be "solved" by MCL restrictions or a precise set
of disambiguation rules; but I think that the best solution is to add
an explicit continuation symbol. The first example on page 12 implies
that a comment is a continuation if it is not preceded by a semicolon.
This would be very confusing to users.

Another solution is to decide that commands in compound commands
should always end in semicolons (best if editing and reentry of
previous commands is permitted) or that semicolons are required if a 0
ccmmand is not followed by a reserved word which always follows a
command such as AB(RT, BEGIN, CASE, ELSE, EISIF, EXIT, FUR, IF,
LOGOUT, LOOP, RETURN, USE, THEN, WHEN. (Actually some of these
reserved words can follow other reserved words which never terminate a
command, for example OR ELSE.)

12 C

Does not mention the backslash (\) character is a line continuation
character.

11-12 A

,.- The rules for complete vs. continuation comand lines are unclear and
sound like continuation commands have to be broken very carefully to -

insure that a partial command is treated as a complete command. --

Some provision is needed, if it doesn't already exist, to prohibit
user interruption of an MCP STARTUP execution., This will allow users
to insure that security programs written to validate sign-on can't be
circumvented by a issuance of a control-c.

APPENDIX A.2.2 30 C

A minor point - but I don't understand why no whitespace is allowed
between function name and the left parenthesis.

APPENDIX A.6 33 B

. I don't like the requirement that background tasks must not be running
when LOGOUT or SUSPEND is executed. It may be that a DETACH command
is required to permit compilations to continue while the user leaves -

. the AIE environment, either to use the underlying operating system to
check his mail, or to disconnect completely to go to lunch. I have
had to baby sit a terminal too often to see this design flaw blithely
accepted.

APPENDIX A.8 35

The system should be careful about when it notifies users that a task

" 3UM- 31

.........,,..., .-.. ..,,

III -~1~, III ~ ,ii .5 ~ OWN

has been completed. A user may well be executing another program
which is controlling the screen. A completion message could easily
cause important information to be lost (either over written or
scrolled off the display) or cause confusion if i.t doesn't return the
cursor to the position %here it was when the completion notice
occurred. They should only appear associated with prompts for commanrd
input.

APPENDIX A.12.3 43 A

It sounds like database objects (which program context objects are)
disappear if the exit status is "OKI. If so, how can STATUS work for
successfully terminated programs. If not, how long does this program
context object remain in the system; is it deleted only by positive
action of a user?

APPENDIX A.16 45 C

Some syntax/semantics checking of the script file would be desirable
before execution of the script.

APPENDIX A.16.1 47 A

There must be a typo; I don't see how or why %COM4PILEERRORS is
created.

APPENDIX B.1 (C) 49 A

The backslash character Is missing.- -

49 A

The description of the use of the backslash ''character seems to_
conflict with other sentences regarding lexical units in the same
paragraph, the description of continuation lines on page 12, the
description of parameter passing in A.2 on page 27, and the
description of expressions on page 52.

APPENDIX B.3.4 55 A

Explicit conversion of a type to itself should be allowed. A user
writing a script may not know what type of argumnent will be supplied
and went to convert for safety, or to make the script easier to
understand, or to guarantee that the result of an operation is of the
type he expects. Ibr example: REL((1.7 + 6) * 10)

Also, I assume that blank lines were omitted before and after INTEGER~
to STRING conversion.

TABLE A. 4 40

(and Section #A.12.l,page 41) It is not made clear whether
* %=TWi.EXECU~rON.TZME refers to elapsed time or task time. Pbr

3U - 32

systems wh~ich maintain charging information, it wiould be desire to
include a component *COSTO analogous to EXMLMION.TIME.

3U -3

. - G 4 1., q

ISPECIFICATION TITLE: AIE: PROGRAM INTEGRATION FACILITIES
ISPBCIFICATICN DATE: 22 MARCH 1983
ISPECIFICATION NURBER: IR-681-1
IREVIE DATE: 19 APRIL 1983 J

Paragraph Page Competence Level
0.0 0 A

The facility for separate libraries of utility programs (herein
referred to as resource catalogs) is a necessary requirement for
practical program development. I was glad to see that the AIE
interpretation of the Ada Program Library accommodates such a
facility. However, linkers have been traditional resource users and
the mechanisms described in this specification imply even more
overhead than normal. I think linker performance objectives that are
within the user pain threshold should be established.

3.2.4.5 25 A

The implication is that both the AST and the DIANA representation of a
program are retained in the program library. If the DIANA form is a
further attributed AST as implied by the compiler specification, and
the AST is reconstructable from the DIANA form as indicated by the
DIANA Reference Manual, than I don't understand the need for both to
be retained.

3.2.4.7.4 29 A - --

The assembly listing for the Perkin-Elmer 8/32 should correspond to
the Perkin- Elmer Assembler listing format rather than the 4341
assembler.

3.2.5 31 A

Rather than retain the AST and DIANA around and require a source
reconstructor tool it would seem to make more sense to retain the
source around and build an elaborate AST and DIANA reconstructor. A
good name for such a tool might be an ST/ IANA ttribute (or Ada) - -. I

compiler.

3.3.1.0 32 A

I found it difficult to distinguish some of the terms used in this
section and to understand all of the concepts and relationships
presented.

3.3.1.1.1 33 A

Successful compilation of a program has never been an indication of ,
program viability. Replacement of the backup with the compilation . .
object prior to testing seem unwise. It not only destroys the

3U - 34

r
previous backup but creates a duplicate copy of an untested object.
if anything, why not replace the backup with the previous up-to-date
object.

3.3.2.4.2 54 A

I suggest that a generated body should raise a PROGRAM ERROR exception
if it is entered.

3.3.3.6.2 65 A

How is an assembly listing generated if the information is not0
retained (ref. 3.3.3.6)?

3U - 3

ISPECIFICATION TITLE: AlE: MAPSE DEBUGGING FACILITIES
ISPECIFICATION DATE: 5 JANUARY 1983
ISPECIFICATION NLBER: IR-682-1
IREVIEW DATE: 19 APRIL 1983

Paragraph Page Ccmxpetence Level
0.0 0 A

This entire facility appears to be based upon the assumption that "-
machine level debugging will no longer be necessary. It sure would be -'

nice if that were true but there doesn't seem to be anything in either
Ada or the MAPSE that is going to obviate this need. Certainly there
will be compiler errors even after passing the most rigorous of ACVC.
Let's support the application programmer's needs. There should be
some mechanism for register and hardware status display and
relocatable memory dumps; let's not give up the tools that have worked
in the past until the new ones are proven. -

3.2.4.2 7 A

It appears that in order to use the debugger at all that the DSR and - -
possibly the UTILITY PROCEDURES must be linked with the user's P
program. That implies that you cannot debug a production program
without relinking. Bool! Relinking can cause address sensitive
errors such as wild stores to disappear. It should not be necessary
to include any additional information in the execution image in order
to support debugging.

3.2.4.2.1 8 A

The absence of hooks should not prohibit single stepping. All the
information necessary to perform such execution appears to be present. -

3.3.1.0 13,... A

The debugger command syntax is too verbose. There is not a real
requirement for these commands to be highly readable; debugger scripts
almost never have to be maintained. The value of a debugger is
measured by how quickly it will permit a bug to be revealed,
pinpointed, and corrected. The debugger, like text editors, are the
most frequently used programs during program development and should be
responsive to the interactive user. I don't think this command syntax -
is.

S

3.3.1.2 18 A

The IGNORE command should permit specification of other than the
current breakpoint.

14 A

3u* -363U-36-.-"-"

.- • , •".

• ° . ., . • • ~. °o *. .- -..• . . . •,. - . .

- WWC;7 -. j

It appears that you can breakpoint all procedure entries or none. A
list of procedures should be permitted for both ON_ENRY and ONEXIT.

0

3.3.6.2 34 A

I would suggest that instead of reconstructing the source, that the
actual source be accessed via pointers that exist in the either the
retained AST, DIANA or the statement table. 0

I question whether the pretty printer is going to be able to pick up
formatting in the middle of a program at any arbitrary line number.

I SPECIFICATION TITLE: VIRTUAL MEMORY METHODOLOGY
!SPECIFICATION DATE: 82 OCT 8
ISPECIFICATION NUMBER: IR-MA-142-1
I"REVIEW DATE: 83 MAY I

Paragraph Page Competence Level

0.0 GENERAL B

None of the B5 specifications examined contain an index. This --
proved extremely bothersome. In many instances I wished to compare
all uses of a particular term, find the definition of a term, and the
like. Without an index such tasks are effectively impossible. This
is quite simply unacceptable.

GENERAL B

I was most disappointed to get to the detailed information on the
various facilities where the package specifications are given, or at
least sketched, and find only two or three comment lines per procedure
or

function that can be invoked by the user. A completely formal
specification is, admittedly, neither desirable nor tractable.
However, a more robust specification technique could have been adopted
to describe WHAT the operation does; the interface alone is just too
little information. In general, this lack of information prevented me
from throughly comparing the package specification with the other
written description of functionality that was provided. The
information I needed to make such a comparison was simply missing -
and I did not feel like "guessing", and then critiquing my own guess.

0 A

This package looks very capable but I am concerned that the use of a
virtual database by either the co e tcomplex. I can't point tolar

* features as excess, but the structure seems ready to fall of its own
weight. Compromises introduced early in the design seem to have
caused other features to be added which in turn required the original
compromise to be necessary.

Take the Rep Analyzer for example. It is required because the VM.4

3U- 37

-'- -."..........................-.. .,".

system places severe restrictions on the components of records in the ,-
VM system. But most of these restr "ctions are there to make the Rep
Analyzer easy to implement, and to implement the concept of a domain.
But domains are only needed to allow mixing of VMM designator types in
records, which can not otherwise be done given the existence of the
Rep Analyzer, and so on. (Mhy can't I have an access value in a VMM
object? It doesn't have to designate a VtM object, it could designate
something else. Fbr example, if the compiler maintained a symbol
table in memory but the Diana tree was in VM, then a tree node could
designate a symbol table entry larger than the data it indexes.)
Tb sum up I think that a searching design review could came up with a
design which provides more functionality and is much easier to

B implement. We have done it here, and although the goals and
assumptions about the underlying hardware are different, we had no
trouble staying inside Ada and implementing a virtual memory
capability which places very few restrictions on the user. (And if
the the Nuser" is the compiler's code generator, the end user need
know nothing about the underlying system to use it.)

3.1 5 B

Throughout the specification, it is somewhat unclear whether the
facilities offered by the VMM are in fact complete enough to be usable
for purposes other than implementing the CPCI COMP.DIANA. Put another
way, this facility is necessary to implement certain dependent
portions of the AIE; how useful/complete will it be to the user of the
AIE?

3.2.4.2.1 7 B .

*The manner in which operations are associated with the type specified
in the user supplied package specification is unclear. It is also
unclear what constraints, if any, are applicable to the enumeration
type that is used as the for the variant record. It later (3.2.4.2.2) - '
becomes somewhat more clear that the operations on the data type .
instances are those provided by the VMM primitive operations.

9 B

The block immediate beneath the "MAPSE Tool" block in figure 3-1 is
unlabeled. In as much asitis shown tobe output of the
Representation Analyzer, a label is deemed critical.

3.3.1.1 11 B

The architecture of the Rep Analyzer is such that all types which any
given tool wishes to access with the MM facility must be processed as
a single collection (Figure 3-2, pg 10). The obvious consequence of
this is that a change in any of the types forces a regeneration of the
VM acdesspjackage source, and hence recompilation of the using
pecJiages. It Is questioned whether the rep analyzer could not have -
been designed so as to allow multiple 'M access packages. The goal
of this alternative being the minimization of recompilation. If this
option is available, it is not clearly stated as an option.

3U - 38

=.' . ~~~. . , ... o... -... % ,

:: ." i" " . , .* " " . - "-..,.".,. .- ,-_.. . .".. "._.-.-. .-. .--

* ~~~. N---..

12 B

The exact form the of the pragma that must be includ~ed in user
supplied package specification input to the Rep Analyzer is
unspecified. Likewise for the the WITH clause used to access '$14
generic packages. It is unclear whether these requirements are a
reasonable imposition on the user of the Rep Analyzer, or could become0
unnecessarily burdensome.

3.3.1.2 13 B

7 he phrase "Verify restrictions and conventions" is needlessly vague.
If a later paragraph explains this processing further, a forward
reference to the paragraph or paragraphs should be included.

3.3.2.1 15 B

The meaning of the sentence "It will also be possible to specify a
complete implementation for virtual records components by writing
procedure bodies for the attribute selectors." is unclear.

3.3.2.2 16 B

The built-i encapsulated types are, in general, underspecif led.
Enough information is not provided to allow determination of the exact
facilities that will be provided, and their characteristics.

3.3.2.2.1 18 B

* No mention is made of how to create new elements of the dynamic
vector, or how to delete existing elements. As described, the vector
is of static size, rather than dynamic. In addition, the type of the
indices is unspecified. In general the description is too sketchy to
convey complete understanding of what is to be provided.

3.3.3.1 20 B

F- It is unclear whether the mode is permanently associated with the
created VMSD or not. If not, the mode is probably effective only for
(a portion of) the invocation of the program creating the VMSD.

3.3.3.3 ,4 23-29B

* Good discussion of the alternative designs, and their relative merits.

3.3.3.6 32B

A 32 bit integer may not prove an adequate implementation for page
buffer sequence numb~ers. In particular, it would seem a poor choice
for application programs utilizing the VM4 facility that are intended
to run perpetually.

3U - 39

AD INTERATED ENVIROMIENT

PHRASE II EVALUATION CRITERIA

* The questions below have been answered with a ranking of 1 to 5 with 1
being least satisfactory; in some instances the answer has been
amplified with a comment.

I I. GENERAL

- A. To what extent does the design conform to th4 KAPSE/fIAPSE approach
for an integrated programing envirornent? 5

To what extent does the design satisfy the design goals stipulatedias general guidelines in STN91A? 5

*C. Does the overall design provide a system that is conducive to the
development and maintenance of quality Ada software? 3 The debugging

* facilities are weak in some practical machine level features.

D. Does the system design facilitate the development and integration
of new tools? 5

* E. Does it provide for improvements, upgrades and modifications to be
- accomplished in an easy manner? ?

I.. F. Has the contractor given consideration to and provided for the
addition of tools to support development throughout the software life
cycle? 3 The embedded computer support is weak but unfortunately
according to the SCd.

G. lb what degree does the system support both programming and-j project management functions? 4-

H. Has the system been human engineered to provide a consistent user
interface that is easy to learn and use? 3 Some of the commnands are

- too verbose.

i 1. Does the system provide basic facilities to establish project and-
* configuration management controls? 5

J. Does the system facilitate portability? 4 According to the
specification; however, it would be nice if the contract would require

-- proof by a second, different host.

-K. Are all host dependent interfaces clearly identified and
specified? 5

* L. Are the host dependent interfaces minimized and isolated to the
maximum extent possible? 5

M. khat is the degree of effort required to rehost the system? ?

N. Has the system been designed to exploit, but not demand, modern
high capacity and high performance host system software? 1 The VMMt
facility will probably sap resources. The system will likely not fit
on small computers which is unfortunate.

* 0. Are commniication protocols and conventions uniform and consistent
throughout the system? 4

M - 40

P. Does the system provide self-protection and self-recovery

facilities as well as provide user and project protection? 5

Q. Does the design provide for a truly integrated system? 5

R. Does the design provide for software reusability wherever possible
and reasonable? 5

S. 7b what extent does the design achieve the goal of granularity as
stated in STONEMAN? 5

T. Does the design provide for sharing of data and functions? 4

U. Does the overall approach reflect a detailed analysis of all 0
system requirements? 4

V. Has the contractor performed reasonable trade-off analyses and
selected the optimum approach? 3

W. Are the deviations or additions (if any) to the system proposed by
the contractor beneficial to the goverment? ?

X. As a result of its analysis and design, has the contractor
identified or provided additional capabilities that can be implemented
without additional cost?

Y. 7b what extent does the design support the model of an APSE
running on a host machine and supporting development of software for
an embedded target machine? 1 This appears to be the least addressed
capability.

II. KAPSE DATABASE .

A. Does the database system design provide complete database
facilities to support the development, management and maintenance of
Ada programs? 4

B. DoYes the database system design provide comprehensive database
operations and access facilities to meet user, project manager and
MMIASE tool needs? 4

D. Does the design provide an integrated and flexible approach to
versions, attributes, partitions and access controls? 5

III. INTERFACES

A. Des the contractor have a sound approach for realizing the
concept of a virtual interface? 4

B. 7b what extent do the database facilities specified support the
development, management and maintenance of Ada programs? 4

C. Are all the interfaces specified in the design consistent,
straightforward and do they facilitate user and tool communication? 5

IV. KPMSE FUNCTIONS

A. Does the design meet the requirements for the KAPSE functions- .
specified in the S.O.W.? 5

3u - 41

" V. ?%FSE A. Do the designs for the MAPSE tools satisfy requirements -
0 for portability, modularity, flexibility and ease of use? 4

B. Are user/tool communication conventions designed to allow the user
to communicate in a natural and consistent manner across all tools? 4

C. Does the contractor indicate an intention to develop all MAPSE
tools in Ada? 5 If not, are all exceptions justified?

D. D the MAPSE tool designs meet or exceed the requirements

established in the S.O.W.? 5

VI. EDITOR

(This section of the Air Force criteria is irrelevant since the
contract for ALS does not currently require an editor and for the time
being the Army intends to use the EC VAX/VMS supplied
editor.\\However, for completeness, and to allow any comments
reviewers wish to make with respect to editor capabilities,...]

A. D the contractor's specifications provide a sound approach for
furnishing the capabilities required in a basic editing facility? No -

specification was received for the AIE Editor.

VII. DEBUGGER

A. Does the debugging facility design thoroughly address batch and
on-line users in detecting, locating and correcting errors in Ada
programs? 3 The debugger commands are too verbose and do not address
machine level debugging.

VIII. COMPILER - -

A. Is the Ada compiler design modular and within the designated
system resources? The stated objectives of the compiler specification
is to operate within 512KB but to utilize more memory when available
to improve compiler performance. I believe this conforms to the Saw -

requirements but that size as a minimum configuration will limit the
potential hosts for the AIE and that seems unfortunate.

B. Does the design present a state-of-the-art approach to rehosting
and retargeting the Ada compiler without undue difficulty? Although
it is not at all clear how difficult rehosting and retargeting will
be, the 4M schema should contribute to the rehostability of the
compiler. It may be that the emphasis on rehostability and the use of
VMM may seriously impact compiler performance.

C. Does the Ada compiler design satisfy the input/output requirements
stipulated in the S.O.W.? 4

D. Is the contractor's approach to error analysis extensive? The
mechanians appear to be there but the proof in this area is in the
implenentation.

E. Is the optimizer design state-of-the-art? Do the techniques
selected justify the time/resources trade-off? The spec btr fon. Both
should be done.

F. Does the contractor propose to meet the compiler performance and

3u3 -42

* - .. , . 1 •I* *I I I I J . LE .* .. .•*-E . - - : L ... : ; -
-

-L : ;

r capacity specifications of the S.O.W.? It appears that one or the

other is permitted but not both.

IX. LINK/LOADER

A. Will the design of the linking and loading tools provide a smooth
flow to executing Ada programs? The linker tool completes the Ada
program construction requirement and complies with the Ada
requirements of program component compatibility. Although there
appears to be some user control over image storage allocation; there
seems no description of how to load or invoke such overlays.

X. Ada PROGRAM LIBRARY

A. Is the design of the Ada program library optimum?

The AIE program library facilities appear very comprehensive although
it is difficult to understand some of the documentation regarding it.
My concern would be that a substantial overhead will accrue from its
management.

XI. PROJOCT/CONFIGURATION MANAGUENT FACILITIES

A. In support of project/configuration management, does the design
provide reports for batch and on-line users, some reports and
automatic stub generation, as a minimum? The distinction between
batch and on-line users is unclear; at times it appears that the
commands are identical but the interaction with the input and output
devices/objects may be inconsistent. For purposes of providing
reports and for ccomand language preparation, the facilities are more
than sufficient. Insufficient detail is given to determine if the
output of the CM tool, i.e., PIF, is adequate. PIF does provide for
automatic stub generation.

XII. HIGH LEVEL I/O

A. Is the I/0 package design a valid extension or alternate to the
Ada Language Manual? 5

XIII. TERMINAL INTERFACE ROUTINES

A. Do the design terminal interface routines proposed satisfy the

requirement? Not enough detail to determine yet.

XIV. QUALITY ASSURANCE, TESTING, VALIDATION

A. As a minimum, does the proposed computer program development,
* quality assurance, testing and validation plan satisfy the

requirements in the S.O.W.? 4

3' 43

[o, I- '°

...

.~~~ . ..
v---

.
-

*FILMED.

1-85

DTIC

